International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(4) 455-468

Effect of High-Pressure Homogenization and Fat Content on Yogurt Fermentation Process

Latife Betül Gül & Abdullah Akgün

pp. 455 - 468   |  DOI: https://doi.org/10.29329/ijiaar.2023.630.7

Published online: December 31, 2023  |   Number of Views: 27  |  Number of Download: 91


Abstract

The application of the traditional homogenization process used in yogurt production under higher pressure, such as 50-200 MPa, is a new approach to improving yogurt structure and quality effectively. High-pressure homogenization (HPH) is considered a technology that changes the microstructure, water holding capacity, viscosity, and sensorial properties of yogurts by affecting fat globules and protein structures depending on fat content. In this study, the effects on bacterial growth, acidification kinetics and viscosity development were investigated in the production of yogurt from fatty and semi-skimmed milk with HPH. HPH treatment and fat content had a positive effect on the bacterial growth rate, and the maximum counts of L. bulgaricus and S. thermophilus were determined in the yogurt sample made from fatty milk treated with 100 MPa pressure as 8.65 and 9.16 log cfu/g, respectively. Also, the pH and viscosity change during incubation was affected and the Vmax and μmax values for fatty milk treated with 100 MPa pressure reached maximum values of 1.67x10-2 pH unit/min and 2.35x10-2 Pa.s units/min, respectively. With the HPH treatment, the fermentation time in fatty yogurt was shortened by 60 min compared to the control sample.

Keywords: High-Pressure, Homogenization, Fat content, Acidification, Yogurt


How to Cite this Article

APA 6th edition
Gul, L.B. & Akgun, A. (2023). Effect of High-Pressure Homogenization and Fat Content on Yogurt Fermentation Process . International Journal of Innovative Approaches in Agricultural Research, 7(4), 455-468. doi: 10.29329/ijiaar.2023.630.7

Harvard
Gul, L. and Akgun, A. (2023). Effect of High-Pressure Homogenization and Fat Content on Yogurt Fermentation Process . International Journal of Innovative Approaches in Agricultural Research, 7(4), pp. 455-468.

Chicago 16th edition
Gul, Latife Betul and Abdullah Akgun (2023). "Effect of High-Pressure Homogenization and Fat Content on Yogurt Fermentation Process ". International Journal of Innovative Approaches in Agricultural Research 7 (4):455-468. doi:10.29329/ijiaar.2023.630.7.

References
  1. AOAC. (2000). (Association of official chemists). In Official methods of analysis (17th ed.) (Washington, DC, USA). [Google Scholar]
  2. Cho, Y. H., Lucey, J. A., & Singh, H. (1999). Rheological properties of acid milk gels as affected by the nature of the fat globule surface material and heat treatment of milk. International Dairy Journal, 9(8), 537-545. https://doi.org/10.1016/S0958-6946(99)00123-5 [Google Scholar] [Crossref] 
  3. Ciron, C. I. E., Gee, V. L., Kelly, A. L., & Auty, M. A. E. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20(5), 314-320. https://doi.org/10.1016/j.idairyj.2009.11.018 [Google Scholar] [Crossref] 
  4. Ciron, C. I. E., Gee, V. L., Kelly, A. L., & Auty, M. A. E. (2012). Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties. Food Chemistry, 130(3), 510-519. https://doi.org/10.1016/j.foodchem.2011.07.056 [Google Scholar] [Crossref] 
  5. Fira, D., Kojic, M., Banina, A., Spasojevic, I., Strahinic, I., & Topisirovic, L. (2001). Characterization of cell envelope-associated proteinases of thermophilic lactobacilli. Journal of Applied Microbiology, 90(1):123-130. https://doi.org/10.1046/j.1365-2672.2001.01226.x [Google Scholar] [Crossref] 
  6. Galia, W., Perrin, C., Genay, M., & Dary, A. (2009). Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties. International Dairy Journal, 19(2):89-95. https://doi.org/10.1016/j.idairyj.2008.08.004 [Google Scholar] [Crossref] 
  7. Garcı́a-Risco, M. R., Ramos, M., & López-Fandiño, R. (2002). Modifications in milk proteins induced by heat treatment and homogenization and their influence on susceptibility to proteolysis. International Dairy Journal, 12(8):679-688. https://doi.org/10.1016/S0958-6946(02)00060-2 [Google Scholar] [Crossref] 
  8. Gardini, F., Lanciotti, R., Guerzoni, M. E., & Torriani, S. (1999). Evaluation of aroma production and survival of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in fermented milks. International Dairy Journal, 9(2):125-134. https://doi.org/10.1016/S0958-6946(99)00033-3 [Google Scholar] [Crossref] 
  9. Gül, L. B., Bekbay, S., Akgün, A., & Gül, O. (2023). Effect of oleaster (Elaeagnus angustifolia L.) flour addition combined with high‐pressure homogenization on the acidification kinetics, physicochemical, functional, and rheological properties of kefir. Food Science & Nutrition, 11 5325-5337. https://doi.org/10.1002/fsn3.3491 [Google Scholar] [Crossref] 
  10. Hayes, M. G., & Kelly, A. L. (2003). High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. Journal of Dairy Research, 70(3), 297-305. https://doi.org/10.1017/s0022029903006320 [Google Scholar] [Crossref] 
  11. Kristo, E., Biliaderis, C. G., & Tzanetakis, N. (2003). Modelling of the acidification process and rheological properties of milk fermented with a yogurt starter culture using response surface methodology. Food Chemistry, 83(3):437-446. https://doi.org/10.1016/S0308-8146(03)00126-2 [Google Scholar] [Crossref] 
  12. Lanciotti, R., Vannini, L., Pittia, P., & Guerzoni, M. E. (2004). Suitability of high-dynamic-pressure-treated milk for the production of yogurt. Food Microbiology, 21(6), 753-760. https://doi.org/10.1016/j.fm.2004.01.014 [Google Scholar] [Crossref] 
  13. Lanciotti, R., Patrignani, F., Iucci, L., Saracino, P., & Guerzoni, M. (2007). Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chemistry 102(2):542-550. https://doi.org/10.1016/j.foodchem.2006.06.043 [Google Scholar] [Crossref] 
  14. Law, J. & Haandrikman, A. (1997). Proteolytic enzymes of lactic acid bacteria. International Dairy Journal, 7(1):1-11. https://doi.org/10.1016/0958-6946(95)00073-9 [Google Scholar] [Crossref] 
  15. Lee, W. J. & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences, 23(9):1127-1136. https://doi.org/10.5713/ajas.2010.r.05   [Google Scholar] [Crossref] 
  16. Levy, R., Okun, Z., & Shpigelman, A. (2022). Utilizing high-pressure homogenization for the production of fermented plant-protein yogurt alternatives with low and high oil content using potato protein isolate as a model. Innovative Food Science & Emerging Technologies, 75. https://doi.org/10.1016/j.ifset.2021.102909 [Google Scholar] [Crossref] 
  17. Lucey, J. A., & Singh, H. (1997). Formation and physical properties of acid milk gels: a review. Food Research International, 30(7), 529-542. https://doi.org/10.1016/S0963-9969(98)00015-5 [Google Scholar] [Crossref] 
  18. Massoud, R., Belgheisi, S., & Massoud, A. (2016). Effect of high pressure homogenization on improving the quality of milk and sensory properties of yogurt: A review. International Journal of Chemical Engineering and Applications, 7(1), 66-70. https://doi.org/10.7763/ijcea.2016.v7.544 [Google Scholar] [Crossref] 
  19. Neviani, E., Giraffa, G., Brizzi, A., & Carminati, D. (1995). Amino acid requirements and peptidase activities of Streptococcus salivarius subsp. thermophilus. Journal of Applied Bacteriology 79(3):302-307.  https://doi.org/10.1111/j.1365-2672.1995.tb03141.x [Google Scholar] [Crossref] 
  20. Nguyen, H. T. H., Ong, L., Kentish, S. E., & Gras, S. L. (2015). Homogenisation improves the microstructure, syneresis and rheological properties of buffalo yoghurt. International Dairy Journal, 46:78-87. https://doi.org/10.1016/j.idairyj.2014.08.003 [Google Scholar] [Crossref] 
  21. Nguyen, P. T. M., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids, 72, 90-104. https://doi.org/10.1016/j.foodhyd.2017.05.035 [Google Scholar] [Crossref] 
  22. Oliveira, M. M. d., Augusto, P. E. D., Cruz, A. G. d., & Cristianini, M. (2014). Effect of dynamic high pressure on milk fermentation kinetics and rheological properties of probiotic fermented milk. Innovative Food Science & Emerging Technologies, 26:67-75. https://doi.org/10.1016/j.ifset.2014.05.013 [Google Scholar] [Crossref] 
  23. Patrignani, F., Iucci, L., Lanciotti, R., Vallicelli, M., Mathara, J. M., Holzapfel, W. H., & Guerzoni, M. E. (2007). Effect of high-pressure homogenization, nonfat milk solids, and milkfat on the technological performance of a functional strain for the production of probiotic fermented milks. Journal of Dairy Science, 90(10), 4513-4523. https://doi.org/10.3168/jds.2007-0373 [Google Scholar] [Crossref] 
  24. Patrignani, F., Serrazanetti, D. I., Mathara, J. M., Siroli, L., Gardini, F., Holzapfel, W. H., & Lanciotti, R. (2016). Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containing Lactobacillus rhamnosus BFE 5264. International Journal of Dairy Technology, 69(2):262-271. https://doi.org/10.1111/1471-0307.12251 [Google Scholar] [Crossref] 
  25. Roach, A. & Harte, F. (2008). Disruption and sedimentation of casein micelles and casein micelle isolates under high-pressure homogenization. Innovative Food Science & Emerging Technologies, 9(1):1-8. https://doi.org/10.1016/j.ifset.2007.03.027 [Google Scholar] [Crossref] 
  26. Rudra, S. G., Nath, P., Kaur, C., & Basu, S. (2017). Rheological, storage stability and sensory profiling of low-fat yoghurt fortified with red capsicum carotenoids and inulin. Journal of Food Processing and Preservation, 41(4). https://doi.org/10.1111/jfpp.13067 [Google Scholar] [Crossref] 
  27. Serra, M., Trujillo, A. J., Quevedo, J. M., Guamis, B., & Ferragut, V. (2007). Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. International Dairy Journal, 17(7):782-790. https://doi.org/10.1016/j.idairyj.2006.10.001 [Google Scholar] [Crossref] 
  28. Serra, M., Trujillo, A. J., Jaramillo, P. D., Guamis, B., & Ferragut, V. (2008). Ultra-high pressure homogenization-induced changes in skim milk: impact on acid coagulation properties. Journal of Dairy Research, 75(1):69-75. https://doi.org/10.1017/S0022029907003032 [Google Scholar] [Crossref] 
  29. Serra, M., Trujillo, A. J., Guamis, B., & Ferragut, V. (2009a). Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocolloids, 23(1), 82-91. https://doi.org/10.1016/j.foodhyd.2007.11.015 [Google Scholar] [Crossref] 
  30. Serra, M., Trujillo, A. J., Guamis, B., & Ferragut, V. (2009b). Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk. International Dairy Journal, 19(2), 100-106. https://doi.org/10.1016/j.idairyj.2008.08.002 [Google Scholar] [Crossref] 
  31. Sert, D., Mercan, E., & Tanrıkulu, M. (2023). Impact of high-pressure homogenisation of milk on physicochemical, microbiological, and textural characteristics of sheep milk yoghurt. International Dairy Journal, 144. https://doi.org/10.1016/j.idairyj.2023.105704 [Google Scholar] [Crossref] 
  32. Sevenich, R., & Mathys, A. (2018). Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: A review. Comprehensive Reviews in Food Science and Food Safety, 17(3), 646-662. https://doi.org/10.1111/1541-4337.12348 [Google Scholar] [Crossref] 
  33. Sfakianakis, P., Topakas, E., & Tzia, C. (2014). Comparative study on high-intensity ultrasound and pressure milk homogenization: Effect on the kinetics of yogurt fermentation process. Food and Bioprocess Technology, 8(3), 548-557. https://doi.org/10.1007/s11947-014-1412-9 [Google Scholar] [Crossref] 
  34. Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11):1262-1277. https://doi.org/10.1016/j.idairyj.2007.01.014 [Google Scholar] [Crossref] 
  35. Shiby Varghese K., & Mishra, H. N. (2008). Modelling of acidification kinetics and textural properties in dahi (Indian yogurt) made from buffalo milk using response surface methodology. International Journal of Dairy Technology, 61(3):284-289. https://doi.org/10.1111/j.1471-0307.2008.00411.x [Google Scholar] [Crossref] 
  36. Sodini, I., Remeuf, F., Haddad, S., & Corrieu, G. (2004). The relative effect of milk base, starter, and process on yogurt texture: a review. Critical Reviews in Food Science and Nutrition, 44(2), 113-137. https://doi.org/10.1080/10408690490424793 [Google Scholar] [Crossref] 
  37. Swelam, S. (2018). Impact of high hydrostatic pressure on composition and quality of yoghurt. Journal of Food and Dairy Sciences, 9(1):31-35. https://doi.org/10.21608/jfds.2018.35164 [Google Scholar] [Crossref] 
  38. Torres, I. C., Amigo, J. M., Knudsen, J. C., Tolkach, A., Mikkelsen, B. Ø., & Ipsen, R. (2018). Rheology and microstructure of low-fat yoghurt produced with whey protein microparticles as fat replacer. International Dairy Journal, 81, 62-71. https://doi.org/10.1016/j.idairyj.2018.01.004 [Google Scholar] [Crossref] 
  39. Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., & Guamis, B. (2002). Applications of high-hydrostatic pressure on milk and dairy products: a review. Innovative Food Science & Emerging Technologies, 3(4), 295-307. [Google Scholar]