International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2018, Vol. 2(4) 295-306

Assessment of Microelements Content in Organic Soft Albanian Wheat Genotypes

Artiona Laze, Valentina Arapi, Ferdi Brahushi, Lato Pezo, Janja Kristl, Ylenia Riciputi & Desimir Knezevic

pp. 295 - 306   |  DOI: https://doi.org/10.29329/ijiaar.2018.174.4

Published online: December 17, 2018  |   Number of Views: 100  |  Number of Download: 842


Abstract

The increase of micro-element content in wheat seed to reduce human malnutrition is a challenge for all agronomists during plant breeding. The objective of the current study was to assess the micro-element content as Cu, Fe, Mn, Cd, Zn and Cr in 20 accessions and 10 lines of soft wheat grown under organic farming system in Albanian region. The Cu, Fe and Zn contents were determined by flame atomic absorption spectrometry (FAAS) and the Mn, Cd and Cr contents were determined by electrothermal atomic absorption spectrometry (ETAAS). The obtained results showed significant variations in micro-element contents in different wheat grains genotypes. Higher levels of Cu, Zn, Fe and Mn (6.79; 46.42; 66.78 and 34.87 mg/kg, respectively in wheat lines) were observed in the present study. These values were higher compared to data reported in previous studies which are performed in the conventional farming system. The concentrations of Cd as a potential toxic element were below the EU limits in all the analyzed samples. The present study showed that the analyzed wheat samples could be considered as a valuable source of micro-elements in human diet.

Keywords: Concentration, Food requirement, Genotype, Microelement, Soft wheat


How to Cite this Article

APA 6th edition
Laze, A., Arapi, V., Brahushi, F., Pezo, L., Kristl, J., Riciputi, Y. & Knezevic, D. (2018). Assessment of Microelements Content in Organic Soft Albanian Wheat Genotypes. International Journal of Innovative Approaches in Agricultural Research, 2(4), 295-306. doi: 10.29329/ijiaar.2018.174.4

Harvard
Laze, A., Arapi, V., Brahushi, F., Pezo, L., Kristl, J., Riciputi, Y. and Knezevic, D. (2018). Assessment of Microelements Content in Organic Soft Albanian Wheat Genotypes. International Journal of Innovative Approaches in Agricultural Research, 2(4), pp. 295-306.

Chicago 16th edition
Laze, Artiona, Valentina Arapi, Ferdi Brahushi, Lato Pezo, Janja Kristl, Ylenia Riciputi and Desimir Knezevic (2018). "Assessment of Microelements Content in Organic Soft Albanian Wheat Genotypes". International Journal of Innovative Approaches in Agricultural Research 2 (4):295-306. doi:10.29329/ijiaar.2018.174.4.

References
  1. Ambedkar, G. and M. Muniyan M (2012). Analysis of heavy metals in water, sediments and selected freshwater fish collected from Gadilam river, Tamilnadu, India. Int. J. Tox. Appl. Pharmacol., 2(2), 25-30.  [Google Scholar]
  2. Bernard, A. (2008). Cadmium and its adverse effects on human health. Indian J. Med. Res., 128, 557-  564. [Google Scholar]
  3. Bodroža – Solarov, M.,  D. Vujić, M. Ačanski, L. Pezo, B. Folipčev and N. Mladenov (2014). Characterization of the liposoluble fraction, of common wheat (Triricum aestivum) and spelt, (T. aetivum ssp, spelta) flours using multivariante analysis. J. Sci. Food Agr. DOI 10.1002/jsfa.6655. [Google Scholar]
  4. Branca, F., S. Valtueña, M. Golden and S. Robins (2002). Urinary collagen cross-links as biochemical markers of growth: an evaluation of biological variables. Ann. Nutr. Metab., 46, 80–87. [Google Scholar]
  5. Bukvić, G., M. Antunovi, S. Popovi and M.  Rastija (2003). Effect of P and Zn fertilisation on biomass yield and its uptake by maize lines (Zea mays L.), Plant Soil Environ., 49(11), 505-510.  [Google Scholar]
  6. Caballero, B. (2002). Global Patterns of Child Health. The role of Nutrition. Ann. Nutr. Metab., 46,  3-7. [Google Scholar]
  7. Cakmak, I., A. Torun, E. Millet, M. Feldman, T. Fahima, A. Korol, E. Nevo, H. J. Braum and H. Ozkan (2004). Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr., 50, 1047-1054. [Google Scholar]
  8. Cakmak, I. (2008). Enrichment of cereal grains with zink: agronomic or genetic biofotification?. Plant soil., 302, 1-17. [Google Scholar]
  9. Cakmak, I., W. H. Pfeiffer and B. McClafferty (2010b). Biofortification of durum wheat with zinc and iron. Cereal Chem., 87, 10–2010.1094/CCHEM-87-1-0010. [Google Scholar]
  10. Chatzav, M., Z. Peleg, L. Ozturk, A. Yazici, T. Fahima, I. Cakmak and Y. Saranga (2010). Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann. Bot., 105, 1211-1220.   [Google Scholar]
  11. Cary, E. E. and J. Kubota (1990). Chromium concentration in plants: effects of soil chromium concentration and tissue contamination by soil. J. Agric. Food Chem., 38, 108–114. [Google Scholar]
  12. Edward, J. B., E. O. Idowu, J. A. Oso and O. R. Ibidapo (2013). Determination of heavy metal concentration in fish samples, sediment and water from Odo-Ayo River in Ado-Ekiti, Ekiti State, Nigeria. IJEMA. 1(1), 27–33. [Google Scholar]
  13. Fergusson, J. E. (1990). The heavy elements: Chemistry, Environmental Impact and Health effect; Pergamon Press. [Google Scholar]
  14. DGE (German Nutrition Society) (2001). Referenzwerte fur die Nährstoffzufuhr, 1. Auflage; Hrs. DGE, ÖGE, SGE und SVE. 1st ed. Umschau/Braus; Frankfurt, Germany.  [Google Scholar]
  15. Dias, A. S., F. C. Lidon and J. C. Ramalho (2009). IV. Heat stress in Triticum: kinetics of Fe and Mn accumulation. Braz. J. Plant Physiol., 21, 153-164.    [Google Scholar]
  16. FAO (Food and Agriculture Organization) Food supply. Available                   online:http://faostat.fao.org/site/609/DesktopDefault.aspx?PageID=609.   [Google Scholar]
  17. Grotz, N. and M. L.  Guerinot (2006). Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim. Biophys. Acta., 1763, 595–608.  [Google Scholar]
  18. Gonzales, M., M. Gollego and M. Varcarcel (2001). Slurry atomization of wheat – milled fraction for electrothermal atomic absorption determination of nickel and chromium. J AOAC Int., 84 (6), 1914 – 1920.   [Google Scholar]
  19. Hejcman M., M. Berková and E. Kunzová (2013). Effect of long-term fertilizer application on yield and concentrations of elements (N, P, K, Ca, Mg, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) in grain of spring barley. Plant, Soil Environ., 59, 329–334. [Google Scholar]
  20. Hurrel, R. F. (2000). Modifing the composition of plant food for better human health. In crop Science: Progress and Prospect. Proc. of the third International Crop Science Congress, Hamburg, Germany, 53-64. [Google Scholar]
  21. Jelić M., J. Milivojević, I. Dalović and A. Paunović (2009). Chromium and cadmium concentrations in small grain plants depending on fertilisation system. Proceedings | sa . 44th Croatian & 4th International Symposium . p. 523 – 527. [Google Scholar]
  22. Kalagbor, I. A., V. Barisere, G. Barivule, S. Barile and C.  Bassey (2014).  Investigation of the presence of some heavy metals in four edible vegetables, bitter leaf (Vernomia amygdalina), scent leaf (Ocimum gratissimum), waterleaf (Talinum triangulare) and fluted pumpkin (Telfaira occidentalis) from a cottage farm in Port Harcourt. RJEES, 6(1), 18–24. [Google Scholar]
  23. Kovačević, V., D. Šimić, I. Kadar, D. Knežević, Z. Lončarić (2011). Genotype and liming effects on cadmium concentration in maize (Zea mays L.). Genetika, 43 (3), 607-615. [Google Scholar]
  24. Kristl, J., M. Veber and M. Slekovec (2002). The application of ETAAS to the determination of Cr, Pb and Cd in samples taken during different stages of the winemaking process. Anal. Bioanal. Chem., 373, 200-204. [Google Scholar]
  25. Liu, Z.H., H. Y. Wang, X. E. Wang, G. P. Zhang, P. D. Chen and D. J. Liu (2007).  Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J. Cereal Sci., 45, 319–326. [Google Scholar]
  26. Peterson, C.J., V.A. Johnson and P.T. Mattern (1986). Influence of cultivar and environment on mineral and protein concentrations of wheat flour, bran, and grain. Cereal Chem., 63, 118–186. [Google Scholar]
  27. Rembialkowska, E. (2007). Quality of plant product from organic agricultura. J. Sci. Food Agric., 87 (5), 2757 – 2762. [Google Scholar]
  28. Ryan, M., J. Derrick and P. Dann (2004). Grain mineral concentrations and yield of wheat grown under organic and conventional management. J. Sci. Food Agri., 84, 207-216. [Google Scholar]
  29. Uprety, D., M. Hejcman, J. Száková, E. Kunzová and P. Tlustoš (2009). Concentration of trace elements in arable soil after long-term application of organic and inorganic fertilizers. Nutr. Cycl. Agroecosys., 85, 241–252. [Google Scholar]
  30. Sékara, A., M. Poniedziaek, J. Ciura and E. Jêdrszczyk (2005). Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol. J. Environ. Stud., 14, 509-516. [Google Scholar]
  31. Stefanovic,  V. Z., N. K. Filipovic and B. M. Janovic (2008). Undesirable metals content in wheat of different wheat varieties. Acta Periodica Tech., 39, 69 – 76.   [Google Scholar]
  32. Spiegel, H., M.  Sager, M. Oberforster, K. Mechtler, H.P. Stueger and A. Baumgarten (2009).  Nutritionally relevant elements in staple foods: Influence of arable site versus choice of variety. Environ. Geochem. Health., 31, 549-560. [Google Scholar]
  33. Sun, T. and S.A. Tanumihajrdjo (2007). An integrated approach to evaluate food antioxidant capacity. J. Food Sci., 72, 159 – 165.  [Google Scholar]
  34. Welch, R.M., G.F. Combs Jr. and J. M. Duxbury (1997). Toward a 'Greener' revolution. Issues Sci. Tech., 14, 50-58.  [Google Scholar]
  35. WHO (1999). Malnutrition worldwide. Geneve, Switzerland; World Health Organization. http://www.who.int/nut/malnutrition_worldwide.htm. 1-13.   [Google Scholar]