International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(2) 129-137

Effect of Blanching Time Variation on Nutritional and Functional Quality Attributes of Pea Pods

Khaoula Ben Saıd, Sihem Bellagha & Héla Gliguem

pp. 129 - 137   |  DOI:

Published online: June 30, 2024  |   Number of Views: 7  |  Number of Download: 25


Pea pods (PP), which account for 30–40% of fresh green peas weight, are by-products that may emanate from pea processing industry. They are promising sources of compounds beneficial to human health and are considered as a possible functional food ingredient for developing health-promoting products with high added value. In this study, blanching pre-treatment step has been applied to pea pods (PP) to promote enzyme inactivation which can lead to quality loss during storage. The main objective of this experiment was to determine the effect of different blanching times (2, 4, 6, 8 and 10 min) on reducing sugars, phenolic and carotenoids contents, and water holding capacity (WHC) of the treated product. Pea pods (PP), that were subjected to the different blanching times mentioned above, were transformed in powders that were compared to unblanched pea pods (PP). Results showed a significant (P<0.05) decrease in reducing sugars and phenols due to blanching treatment from 18 g 100 g-1 DW (unblanched sample) to 10 g 100 g-1 DW (blanched pea pods for 10min) and from 428 mg 100 g-1 DW (unblanched sample) to 232 mg 100 g-1 DW (blanched pea pods for 10min), respectively. However, the increase of blanching time from 2 to 4 min was efficient in increasing carotenoids content. Similarly, lower values of WHC were found with longer bleaching time (from 6 to 10 min), while unblanched and blanched pea pods (PP) for 2 and 4 min exhibited the same water holding capacity (WHC). Globally, blanching for 2min was found better for preserving the product nutritional value and its functional property.

Keywords: Pea Pods, By-Products, Blanching, Nutritional Properties, Functional Property

How to Cite this Article

APA 6th edition
Said, K.B., Bellagha, S. & Gliguem, H. (2024). Effect of Blanching Time Variation on Nutritional and Functional Quality Attributes of Pea Pods . International Journal of Innovative Approaches in Agricultural Research, 8(2), 129-137. doi: 10.29329/ijiaar.2024.1049.6

Said, K., Bellagha, S. and Gliguem, H. (2024). Effect of Blanching Time Variation on Nutritional and Functional Quality Attributes of Pea Pods . International Journal of Innovative Approaches in Agricultural Research, 8(2), pp. 129-137.

Chicago 16th edition
Said, Khaoula Ben, Sihem Bellagha and Héla Gliguem (2024). "Effect of Blanching Time Variation on Nutritional and Functional Quality Attributes of Pea Pods ". International Journal of Innovative Approaches in Agricultural Research 8 (2):129-137. doi:10.29329/ijiaar.2024.1049.6.

  1. A, P., Kaur, N., Aggarwal, P., & Kaur, S. (2024). Autoclave-Assisted Steam Blanching of Sugarcane Bites: Effect on Enzymatic Activity, Color Values, Phytochemical Profile, and Organoleptic Quality. Sugar Tech, 26(2), 521-528. doi:10.1007/s12355-024-01377-1 [Google Scholar] [Crossref] 
  2. Abd El-Hady, E. A., & Habiba, R. A. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT - Food Science and Technology, 36(3), 285-293. doi:10.1016/s0023-6438(02)00217-7 [Google Scholar] [Crossref] 
  3. Ahluwalia, P., Kaur, A., & Dhillon, G. K. (2012). Effect of different drying methods on chemical and functional properties of marigold petals. International Journal of Food and Nutritional Sciences, 3(4), 53-59.  [Google Scholar]
  4. Ahmed, A., Abu Bakar, M. S., Hamdani, R., Park, Y.-K., Lam, S. S., Sukri, R. S., . . . Aslam, M. (2020). Valorization of underutilized waste biomass from invasive species to produce biochar for energy and other value-added applications. Environmental Research, 186, 109596. doi: [Google Scholar] [Crossref] 
  5. Bamidele, O., Fasogbon, M., Adebowale, O., & Adeyanju, A. (2017). Effect of Blanching Time on Total Phenolic, Antioxidant Activities and Mineral Content of Selected Green Leafy Vegetables. Current Journal of Applied Science and Technology, 24(4), 1-8. doi:10.9734/cjast/2017/34808 [Google Scholar] [Crossref] 
  6. Behsnilian, D., & Mayer-Miebach, E. (2017). Impact of blanching, freezing and frozen storage on the carotenoid profile of carrot slices (Daucus carota L. cv. Nutri Red). Food Control, 73, 761-767. doi:10.1016/j.foodcont.2016.09.045 [Google Scholar] [Crossref] 
  7. Belghith-Fendri, L., Chaari, F., Kallel, F., Zouari-Ellouzi, S., Ghorbel, R., Besbes, S., . . . Ghribi-Aydi, D. (2016). Pea and Broad Bean Pods as a Natural Source of Dietary Fiber: The Impact on Texture and Sensory Properties of Cake. Journal of Food Science, 81(10), C2360-C2366. doi:10.1111/1750-3841.13448 [Google Scholar] [Crossref] 
  8. Bureau, S., Mouhoubi, S., Touloumet, L., Garcia, C., Moreau, F., Bédouet, V., & Renard, C. M. G. C. (2015). Are folates, carotenoids and vitamin C affected by cooking? Four domestic procedures are compared on a large diversity of frozen vegetables. LWT - Food Science and Technology, 64, 735-741.  [Google Scholar]
  9. Du, S.-k., Jiang, H., Yu, X., & Jane, J.-l. (2014). Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology, 55(1), 308-313. doi:10.1016/j.lwt.2013.06.001 [Google Scholar] [Crossref] 
  10. Dutta, D., Chaudhuri, U. R., & Chakraborty, R. (2009). Degradation of total carotenoids and texture in frozen pumpkins when kept for storage under varying conditions of time and temperature. Int J Food Sci Nutr, 60 Suppl 1, 17-26. doi:10.1080/09637480701850220 [Google Scholar] [Crossref] 
  11. Hadrich, F., Arbi, M. E., Boukhris, M., Sayadi, S., & Cherif, S. (2014). Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J Oleo Sci, 63(11), 1177-1183. doi:10.5650/jos.ess14107 [Google Scholar] [Crossref] 
  12. Kamalakkannan, N., & Stanely Mainzen Prince, P. (2006). Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol Cell Biochem, 293(1-2), 211-219. doi:10.1007/s11010-006-9244-1 [Google Scholar] [Crossref] 
  13. Kassab, Z., Abdellaoui, Y., Salim, M. H., & El Achaby, M. (2020). Cellulosic materials from pea (Pisum Sativum) and broad beans (Vicia Faba) pods agro-industrial residues. Materials Letters.  [Google Scholar]
  14. Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3), 403-411. doi: [Google Scholar] [Crossref] 
  15. Khandelwal, S., Udipi, S. A., & Ghugre, P. (2010). Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Research International, 43(2), 526-530. doi:10.1016/j.foodres.2009.09.036 [Google Scholar] [Crossref] 
  16. Khattab, R. Y., & Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT - Food Science and Technology, 42(6), 1113-1118. doi:10.1016/j.lwt.2009.02.004 [Google Scholar] [Crossref] 
  17. Mary, G. S., Sugumaran, P. J., Niveditha, S. B., Ramalakshmi, B., Ravichandran, P., & Seshadri, S. (2016). Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture, 5, 43-53.  [Google Scholar]
  18. Mateos-Aparicio, I., Redondo-Cuenca, A., & Villanueva-Suárez, M. J. (2010). Isolation and characterisation of cell wall polysaccharides from legume by-products: Okara (soymilk residue), pea pod and broad bean pod. Food Chemistry, 122(1), 339-345. doi: [Google Scholar] [Crossref] 
  19. Mejri, F., Ben Khoud, H., Njim, L., Baati, T., Selmi, S., Martins, A., . . . Hosni, K. (2019). In vitro and in vivo biological properties of pea pods (Pisum sativum L.). Food Bioscience, 32, 100482. doi: [Google Scholar] [Crossref] 
  20. Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030 [Google Scholar] [Crossref] 
  21. Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. J Sci Food Agric, 94(6), 1057-1070. doi:10.1002/jsfa.6478 [Google Scholar] [Crossref] 
  22. Rogerson, N. E., & Matthews, S. (1977). Respiratory and Carbohydrate Changes in Developing Pea (Pisum sativum L.) Seeds in Relation to their Ability to Withstand Desiccation. Journal of Experimental Botany, 28, 304-313.  [Google Scholar]
  23. Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr Rev Food Sci Food Saf, 17(3), 512-531. doi:10.1111/1541-4337.12330 [Google Scholar] [Crossref] 
  24. Seida, A. A., El Tanbouly, N., Islam, W. T., Eid, H. H., El Maraghy, S. A., & El Senousy, A. S. (2011). Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product. Natural Product Research, 29, 1578 - 1583.  [Google Scholar]
  25. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture.  [Google Scholar]
  26. Vojvodić, A., Komes, D., Vovk, I., Belščak-Cvitanović, A., & Bušić, A. (2016). Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res Int, 89(Pt 1), 565-573. doi:10.1016/j.foodres.2016.07.023 [Google Scholar] [Crossref] 
  27. Wadhwa, M., Kaushal, S., & Bakshi, M. (2006). Nutritive evaluation of vegetable wastes as complete feed for goat buck. Small Ruminant Research - SMALL RUMINANT RES, 64, 279-284. doi:10.1016/j.smallrumres.2005.05.017 [Google Scholar] [Crossref] 
  28. Wang, H., Du, Y.-J., & Song, H.-C. (2010). α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chemistry, 123(1), 6-13. doi: [Google Scholar] [Crossref]