International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(4) 487-497

Determination of in vitro Biocontrol Potentials of Antagonist Bacterial Isolates Against Onion Basal and Root Rot Disease Agent Fusarium proliferatu

Merve Kara, Soner Soylu, Yusuf Gümüş, Emine Mine Soylu, Aysun Uysal & Şener Kurt

pp. 487 - 497   |  DOI: https://doi.org/10.29329/ijiaar.2023.630.10

Published online: December 31, 2023  |   Number of Views: 66  |  Number of Download: 219


Abstract

Various Fusarium species cause significant yield and quality losses in onion (Allium cepa L.) plants. Onion basal and root rot, caused by Fusarium proliferatum, is an emerging postharvest disease that causes severe economic losses. Although the disease has long been recognized as a major constraint to the production of Allium spp., there is insufficient information to support disease management. In recent years, a need has arisen for environmentally friendly, innovative alternative methods to avoid the use of chemical pesticides in the control of diseases that are a problem in agriculture. In this study, the biocontrol efficiency of antagonistic bacterial isolates obtained from bulbs, roots and leaves of healthy onion plants was investigated against F. proliferatum in vitro. The antagonistic activity of the bacterial isolates in inhibiting the mycelial growth of the fungal agent was determined by the dual culture assay. The bacterial isolates were identified by morphological, biochemical and proteomic (MALDI-TOF MS) methods. A total of 18 putative bacterial isolates were obtained from the bulbs, roots and leaves of healthy onion plants on selective media. As a result of in vitro dual culture assays, only six bacterial isolates (Bacillus cereus MK2, Enterobacter xiangfangensis MK3, Bacillus thuringiensis MK8, Alcaligenes faecalis MK9, Pseudomonas putida MK16 and Citrobacter freundii MK17) significantly suppressed mycelial growth of disease agent (43.89-50.56% inhibition). Bacillus cereus MK2 was found to be the most effective bacterial isolate with a 50.56% inhibition rate of mycelial growth. Overall, the results suggest that Bacillus cereus MK2 could be used as a potential biocontrol agent for a sustainable and environmentally friendly control strategy for onion fields affected by Fusarium basal and root rot disease. It is necessary to conduct further studies on the effects of the effective bacterial isolates against the pathogen in vivo and their mechanisms of action.

Keywords: Onion, Antagonist, Bacillus spp., Biological control


How to Cite this Article

APA 6th edition
Kara, M., Soylu, S., Gumus, Y., Soylu, E.M., Uysal, A. & Kurt, S. (2023). Determination of in vitro Biocontrol Potentials of Antagonist Bacterial Isolates Against Onion Basal and Root Rot Disease Agent Fusarium proliferatu . International Journal of Innovative Approaches in Agricultural Research, 7(4), 487-497. doi: 10.29329/ijiaar.2023.630.10

Harvard
Kara, M., Soylu, S., Gumus, Y., Soylu, E., Uysal, A. and Kurt, S. (2023). Determination of in vitro Biocontrol Potentials of Antagonist Bacterial Isolates Against Onion Basal and Root Rot Disease Agent Fusarium proliferatu . International Journal of Innovative Approaches in Agricultural Research, 7(4), pp. 487-497.

Chicago 16th edition
Kara, Merve, Soner Soylu, Yusuf Gumus, Emine Mine Soylu, Aysun Uysal and Sener Kurt (2023). "Determination of in vitro Biocontrol Potentials of Antagonist Bacterial Isolates Against Onion Basal and Root Rot Disease Agent Fusarium proliferatu ". International Journal of Innovative Approaches in Agricultural Research 7 (4):487-497. doi:10.29329/ijiaar.2023.630.10.

References
  1. Abawi, G.S., & Lorbeer, J.W. (1972). Several aspects of the ecology and pathology of Fusarium oxysporum f. sp. cepae. Phytopathology, 62, 870-876. [Google Scholar]
  2. Abdalla, M., Al-Rokibah, A., Moretti, A., & Mule, G. (2000). Pathogenicity of toxigenic Fusarium proliferatum from date palm in Saudi Arabia. Plant Disease, 84, 321-324. [Google Scholar]
  3. Ajilogba, C.F., & Babalola, O.O. (2013). Integrated management strategies for tomato Fusarium wilt. Biocontrol Science, 18(3), 117-127. [Google Scholar]
  4. Aktan, C., & Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(3), 641-654. [Google Scholar]
  5. Amato, B., Pfohl, K., Tonti, S., Nipoti, P., Dastjerdi, R., Pisi, A., Karlovsky, P., & Prodi, A. (2015). Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy. Journal of Applied Botany and Food Quality, 88, 228-233. [Google Scholar]
  6. Baard, V., Bakare, O.O., Daniel, A.I., Nkomo, M., Gokul, A., Keyster, M., & Klein, A. (2023). Biocontrol potential of Bacillus subtilis and Bacillus tequilensis against four Fusarium species. Pathogens, 12(2), 254. [Google Scholar]
  7. Bjelic, D., Ignjatov, M., Marinkovic, J., Milosevic, D., Nikolic, Z., Gvozdanovic-Varga, J., & Karaman, M. (2018). Bacillus isolates as potential biocontrol agents of Fusarium clove rot of garlic. Zemdirbyste-Agriculture, 105(4), 369-376. [Google Scholar]
  8. Card, S., Johnson, L., Teasdale, S., & Caradus, J. (2016). Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92(8). [Google Scholar]
  9. Chalupová, J., Raus, M., Sedlarova, M., & Sebela, M. (2014). Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnology Advances, 32(1), 230-41. [Google Scholar]
  10. Cramer, C.S. (2000). Breeding and genetics of Fusarium basal rot resistance in onion. Euphytica, 115, 159-166. [Google Scholar]
  11. De la Lastra, E., Camacho, M., & Capote, N. (2021). Soil bacteria as potential biological control agents of Fusarium species associated with asparagus decline syndrome. Applied Sciences-Basel, 11(18), 8356. [Google Scholar]
  12. Desjardins, A.E., Busman, M., Proctor, R.H., & Stessman, R. (2007). Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Additives & Contaminants, 24, 1131-1137. [Google Scholar]
  13. Duan, Y.A., Chen, R., Zhang, R., Jiang, W.T., Chen, X.S., Yin, C.M., & Mao, Z.Q. (2022). Isolation and identification of Bacillus vallismortis HSB-2 and its biocontrol potential against apple replant disease. Biological Control, 170, 104921. [Google Scholar]
  14. Duan, Y.N., Chen, R., Zhang, R., Jiang, W.T., Chen, X.S., Yin, C.M., & Mao, Z.Q. (2021). Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots. Frontiers In Microbiology, 12, 746799. [Google Scholar]
  15. El-Sayed, R.A., Jebur, A.B., Kang, W., El-Esawi, M.A., & El-Demerdash, F.M. (2022). An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. Journal of Future Foods, 2, 91-102. [Google Scholar]
  16. Ghanbarzadeh, B., Goltapeh, E.M., & Safaie, N. (2014). Identification of Fusarium species causing basal rot of onion in East Azarbaijan province, Iran and evaluation of their virulence on onion bulbs and seedlings. Archives of Phytopathology and Plant Protection, 47, 1050-1062. [Google Scholar]
  17. Haapalainen, M., Latvala, S., Kuivainen, E., Qiu, Y., Segerstedt, M., & Hannukkala, A.O. (2016). Fusarium oxysporum, F. proliferatum and F. redolens associated with basal rot of onion in Finland. Plant Pathology, 65, 1310-1320. [Google Scholar]
  18. Jimenez, M., Logrieco, A., & Bottalico, A. (1993). Occurrence and pathogenicity of Fusarium species in banana fruits. Journal of Phytopathology, 137, 214-220. [Google Scholar]
  19. Jurado, M., Marín, P., Callejas, C., Moretti, A., Vázquez, C., & González-Jaén, M.T. (2010). Genetic variability and fumonisin production by Fusarium proliferatum. Food Microbiology, 27, 50-57. [Google Scholar]
  20. Kara, M., Soylu, S., Kurt, Ş., Soylu, E.M., & Uysal, A. (2020). Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Horticulturae, 1290, 135-142. [Google Scholar]
  21. Kara, M., Soylu, S., Soylu, E.M., Uysal, A., Kurt, Ş., & Türkmen, M. (2023). Determination of the chemical composition and antifungal activity of wood vinegar (pyroligneous acid) against the onion bulb rot disease caused by Fusarium proliferatum. Gesunde Pflanzen, in press. [Google Scholar]
  22. Latz, M.A., Jensen, B., Collinge, D.B., & Jørgensen, H.J. (2018). Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecology & Diversity, 11, 555-567. [Google Scholar]
  23. Lelliot, R.A., & Stead, D.E. (1987). Methods for the diagnosis of bacterial diseases of plants. (T.F. Preece, Editor). In: Methods in plant pathology. Vol 2, Blackwell Scientific Publications. pp. 176-177, Oxford. [Google Scholar]
  24. Lin, T., Zhao, L., Yang, Y., Guan, Q., & Gong, M. (2013). Potential of endophytic bacteria isolated from ‘Sophora alopecuroides’ nodule in biological control against Verticillium wilt disease. Australian Journal of Crop Science, 7, 139-146. [Google Scholar]
  25. Marín, S., Sanchis, V., Rull, F., Ramos, A.J., & Magan, N. (1998). Colonization of maize grain by Fusarium moniliforme and Fusarium proliferatum in the presence of competing fungi and their impact on fumonisin production. Journal of Food Protection, 61, 1489-1496. [Google Scholar]
  26. Özer, N., & Ömeroğlu, M. (1995). Chemical control and determination of fungal causal agents of wilt disease of onion in Tekirdağ province. The Journal of Turkish Phytopathology, 24, 47-55. [Google Scholar]
  27. Palmero, D., de Cara, M., Nosir, W., Gálvez, L., Cruz, A., Woodward, S., González-Jaén, M.T., & Tello, J.C. (2012). Fusarium proliferatum isolated from garlic in Spain: Identification, toxigenic potential and pathogenicity on related Allium species. Phytopathologia Mediterranea, 51(1), 207-218. [Google Scholar]
  28. Park, J.W., Choi, S.-Y., Hwang, H.-J., & Kim, Y.-B. (2005). Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. International Journal of Food Microbiology, 103, 305-314. [Google Scholar]
  29. Salvalaggio, A.E., & Ridao, A.D.C. (2013). First report of Fusarium proliferatum causing rot on garlic and onion in Argentina. Plant Disease, 97(4), 556. [Google Scholar]
  30. Schwartz, H.F., & Mohan, S.K. (1995). Compendium of onion and garlic diseases. St Paul, MN, APS Press, pp. 54. [Google Scholar]
  31. Seefelder, W., Gossmann, M., & Humpf, H.-U. (2002). Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 50, 2778-2781. [Google Scholar]
  32. Shinmura, A. (2002). Studies on the ecology and control of Welsh onion root rot caused by Fusarium redolens. Journal of General Plant Pathology, 68, 265. [Google Scholar]
  33. Soylu, E.M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 7-18. [Google Scholar]
  34. Stankovic, S., Levic, J., Petrovic, T., Logrieco, A., & Moretti, A. (2007). Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. European Journal of Plant Pathology, 118, 165-172. [Google Scholar]
  35. Türkkan, M., & Karaca, G. (2006). Amasya ili soğan ekiliş alanlarında bulunan fungal kök çürüklüğü hastalık etmenlerinin belirlenmesi. Tarım Bilimleri Dergisi, 12, 357-363. [Google Scholar]