International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(3) 371-387

A Review about A Significant Source of Bioactive Compounds: Microalgae

Hilal Soyocak, Dilara Kızılkaya & Nebahat Şule Üstün

pp. 371 - 387   |  DOI: https://doi.org/10.29329/ijiaar.2023.602.11

Published online: September 30, 2023  |   Number of Views: 73  |  Number of Download: 134


Abstract

Microalgae are single-celled microorganisms with different morphological, physiological, and genetic characteristics. They have an essential place in the aquatic ecosystem due to their photosynthetic feature. Microalgae produce various bioactive compounds as products of primary or secondary metabolism. The bioactive compounds they have; bioactive peptides, polyunsaturated fatty acids, bioactive polysaccharides, vitamins, phenolic compounds, and pigments. These components they produce can accumulate in the biomass and be released into the development environment. Thanks to the bioactive components they produce, microalgae have functional properties such as antioxidant, antimicrobial, antidiabetic, anticarcinogenic, and antihypertensive. Thanks to these features, it is reported that it has many uses and can acquire new areas of use day by day. Today, four microalgae species draw attention from the microalgae, which has a field of use in industries such as food, cosmetics, pharmaceutics, and aquaculture. These are Spiruna, Chlorella, Dunaliella and Haematococcus. Chlorella contains beta-1,3-glucan, which has antioxidant properties and acts as a free radical scavenger. Spirulina, on the other hand, can be used as a food supplement with its high amino acid content (62%). It is also a rich source of vitamins A, B1, B2, B12, and xanthophylls. Microags meet the essential fatty acids needs of fish with the polyunsaturated fatty acids they contain. Microalgae are the primary source of polyunsaturated fatty acids known as fish oil, such as eicosapentaenoic acid and docosahexaenoic acid. It has been reported that microalgae are an under-researched source in terms of both supplementary food and functional ingredient addition in the food industry for a healthy diet. The scope of this review, it is aimed to explain the bioactive compounds possessed by microalgae and the functional properties of these compounds.

Keywords: Microalgae, Bioactive Component, Antioxidant Activity, Phenolic Compound


How to Cite this Article

APA 6th edition
Soyocak, H., Kizilkaya, D. & Ustun, N.S. (2023). A Review about A Significant Source of Bioactive Compounds: Microalgae . International Journal of Innovative Approaches in Agricultural Research, 7(3), 371-387. doi: 10.29329/ijiaar.2023.602.11

Harvard
Soyocak, H., Kizilkaya, D. and Ustun, N. (2023). A Review about A Significant Source of Bioactive Compounds: Microalgae . International Journal of Innovative Approaches in Agricultural Research, 7(3), pp. 371-387.

Chicago 16th edition
Soyocak, Hilal, Dilara Kizilkaya and Nebahat Sule Ustun (2023). "A Review about A Significant Source of Bioactive Compounds: Microalgae ". International Journal of Innovative Approaches in Agricultural Research 7 (3):371-387. doi:10.29329/ijiaar.2023.602.11.

References
  1. Abe, K., Hattori, H., & Hirano, M. (2007). Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food chemistry, 100(2), 656-661. [Google Scholar]
  2. Akyıl, S., İlter, I., Mehmet, K. O. Ç., & Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423. [Google Scholar]
  3. Asgharpour, M., Rodgers, B., & Hestekin, J. A. (2015). Eicosapentaenoic acid from Porphyridium cruentum: Increasing growth and productivity of microalgae for pharmaceutical products. Energies, 8(9), 10487-10503. [Google Scholar]
  4. Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., ... & Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal research, 26, 161-171. [Google Scholar]
  5. Balasubramaniam, V., Gunasegavan, R. D. N., Mustar, S., Lee, J. C., & Mohd Noh, M. F. (2021). Isolation of industrial important bioactive compounds from microalgae. Molecules, 26(4), 943. [Google Scholar]
  6. Bhuvana, P., Sangeetha, P., Anuradha, V., & Ali, M. S. (2019). Spectral characterization of bioactive compounds from microalgae: N. oculata and C. vulgaris. Biocatalysis and Agricultural Biotechnology, 19, 101094. [Google Scholar]
  7. Bule, M. H., Ahmed, I., Maqbool, F., Bilal, M., & Iqbal, H. M. (2018). Microalgae as a source of high-value bioactive compounds. Front. Biosci, 10(2), 197-216. [Google Scholar]
  8. Cha, K. H., Koo, S. Y., & Lee, D. U. (2008). Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. Journal of agricultural and food chemistry, 56(22), 10521-10526. [Google Scholar]
  9. da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20. [Google Scholar]
  10. de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed research international, 2015. [Google Scholar]
  11. Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19(1), 1-23. [Google Scholar]
  12. Del Mondo, A., Smerilli, A., Ambrosino, L., Albini, A., Noonan, D. M., Sansone, C., & Brunet, C. (2021). Insights into phenolic compounds from microalgae: Structural variety and complex beneficial activities from health to nutraceutics. Critical Reviews in Biotechnology, 41(2), 155-171. [Google Scholar]
  13. Deniz, I., Ozen, M. O., & Yesil-Celiktas, O. (2016). Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. The Journal of Supercritical Fluids, 108, 13-18. [Google Scholar]
  14. Deniz Şirinyıldız, D., & Yorulmaz, A. (2022). Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. Toros University Journal of Food Nutrition and Gastronomy, 1(1), 101-117. [Google Scholar]
  15. Ejike, C. E., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B., & Udenigwe, C. C. (2017). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, 30-36. [Google Scholar]
  16. Gantar, M., Dhandayuthapani, S., & Rathinavelu, A. (2012). Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. Journal of medicinal food, 15(12), 1091-1095. [Google Scholar]
  17. Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine drugs, 9(4), 625-644. [Google Scholar]
  18. Herrero, M., Ibáñez, E., Cifuentes, A., Reglero, G., & Santoyo, S. (2006). Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of food protection, 69(10), 2471-2477. [Google Scholar]
  19. İlter, I., Akyıl, S., Koç, M., & Kaymak-Ertekin, F. (2017). Alglerden elde edilen ve gıdalarda doğal renklendirici olarak kullanılan pigmentler ve fonksiyonel özellikleri. Turkish Journal of Agriculture-Food Science and Technology, 5(12), 1508-1515. [Google Scholar]
  20. Ko, S. C., Kim, D., & Jeon, Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and chemical toxicology, 50(7), 2294-2302. [Google Scholar]
  21. Lee, S. H., Chang, D. U., Lee, B. J., & Jeon, Y. J. (2009). Antioxidant activity of solubilized Tetraselmis suecica and Chlorella ellipsoidea by enzymatic digests. Journal of Food Science and Nutrition, 14(1), 21-28. [Google Scholar]
  22. Leya, T., Rahn, A., Lütz, C., & Remias, D. (2009). Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS microbiology ecology, 67(3), 432-443. [Google Scholar]
  23. Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), 771-776. [Google Scholar]
  24. Matsukawa, R., Hotta, M., Masuda, Y., Chihara, M., & Karube, I. (2000). Antioxidants from carbon dioxide fixing Chlorella sorokiniana. Journal of applied phycology, 12, 263-267. [Google Scholar]
  25. Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T., & Bischoff, S. C. (2019). Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants, 8(6), 183. [Google Scholar]
  26. Orosa, M., Valero, J. F., Herrero, C., & Abalde, J. (2001). Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnology Letters, 23, 1079-1085. [Google Scholar]
  27. Pasquet, V., Morisset, P., Ihammouine, S., Chepied, A., Aumailley, L., Berard, J. B., ... & Picot, L. (2011). Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine drugs, 9(5), 819-831. [Google Scholar]
  28. Prabakaran, G., Sampathkumar, P., Kavisri, M., & Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules, 153, 256-263. [Google Scholar]
  29. Petrushkina, M., Gusev, E., Sorokin, B., Zotko, N., Mamaeva, A., Filimonova, A., ... & Kuzmin, D. (2017). Fucoxanthin production by heterokont microalgae. Algal Research, 24, 387-393. [Google Scholar]
  30. Pina-Pérez, M. C., Rivas, A., Martínez, A., & Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food chemistry, 235, 34-44. [Google Scholar]
  31. Remias, D., Lütz-Meindl, U., & Lütz, C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology, 40(3), 259-268. [Google Scholar]
  32. Rodriguez-Garcia, I., & Guil-Guerrero, J. L. (2008). Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food chemistry, 108(3), 1023-1026. [Google Scholar]
  33. Safaei, M., Maleki, H., Soleimanpour, H., Norouzy, A., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2019). Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Scientific reports, 9(1), 9474. [Google Scholar]
  34. Samarakoon, K. W., Ko, J. Y., Rahman, S. M. M., Lee, J. H., Kang, M. C., Kwon, O. N., ... & Jeon, Y. J. (2013). In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae, 28(1), 111-119. [Google Scholar]
  35. Sasa, A., Şentürk, F., Üstündağ, Y., & Erem, F., (2020). Alglerin gıda veya gıda bileşeni olarak kullanımı ve sağlık üzerine etkileri. Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, 2(2), 97-110. [Google Scholar]
  36. Sevencan, A. (2019). Mikroalg Nedir? Biyoaktif Bileşenleri Nelerdir? Nasıl Yetiştirilir? Güncel Konular. URL: https://www.birbes.com/?p=19005. Date of Access: August 17 2023. [Google Scholar]
  37. Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1. 1 under optimized culture conditions. PloS one, 14(9), e0221930. [Google Scholar]
  38. Stirk, W. A., & van Staden, J. (2022). Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnology Advances, 59, 107977. [Google Scholar]
  39. Sun, H., Zhao, W., Mao, X., Li, Y., Wu, T., & Chen, F. (2018). High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotechnology for biofuels, 11, 1-23. [Google Scholar]
  40. Türkmen, A., & Akyurt, İ. (2021). Antiviral Effects of Microalgae. Turkish JAF Sci. Tech, 412-419. [Google Scholar]
  41. Tsvetanova, F., & Yankov, D. (2022). Bioactive compounds from red microalgae with therapeutic and nutritional value. Microorganisms, 10(11), 2290. [Google Scholar]
  42. Uzuner, S., & Haznedar, A. (2020). Fonksiyonel Gıda İçin Sağlıklı Takviye: Mikroalgler. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 212-226. [Google Scholar]
  43. Zhou, L., Li, K., Duan, X., Hill, D., Barrow, C., Dunshea, F., ... & Suleria, H. (2022). Bioactive compounds in microalgae and their potential health benefits. Food Bioscience, 101932.Algae [Google Scholar]