- Abe, K., Hattori, H., & Hirano, M. (2007). Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food chemistry, 100(2), 656-661. [Google Scholar]
- Akyıl, S., İlter, I., Mehmet, K. O. Ç., & Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423. [Google Scholar]
- Asgharpour, M., Rodgers, B., & Hestekin, J. A. (2015). Eicosapentaenoic acid from Porphyridium cruentum: Increasing growth and productivity of microalgae for pharmaceutical products. Energies, 8(9), 10487-10503. [Google Scholar]
- Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., ... & Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal research, 26, 161-171. [Google Scholar]
- Balasubramaniam, V., Gunasegavan, R. D. N., Mustar, S., Lee, J. C., & Mohd Noh, M. F. (2021). Isolation of industrial important bioactive compounds from microalgae. Molecules, 26(4), 943. [Google Scholar]
- Bhuvana, P., Sangeetha, P., Anuradha, V., & Ali, M. S. (2019). Spectral characterization of bioactive compounds from microalgae: N. oculata and C. vulgaris. Biocatalysis and Agricultural Biotechnology, 19, 101094. [Google Scholar]
- Bule, M. H., Ahmed, I., Maqbool, F., Bilal, M., & Iqbal, H. M. (2018). Microalgae as a source of high-value bioactive compounds. Front. Biosci, 10(2), 197-216. [Google Scholar]
- Cha, K. H., Koo, S. Y., & Lee, D. U. (2008). Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. Journal of agricultural and food chemistry, 56(22), 10521-10526. [Google Scholar]
- da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20. [Google Scholar]
- de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed research international, 2015. [Google Scholar]
- Del Mondo, A., Smerilli, A., Sané, E., Sansone, C., & Brunet, C. (2020). Challenging microalgal vitamins for human health. Microbial Cell Factories, 19(1), 1-23. [Google Scholar]
- Del Mondo, A., Smerilli, A., Ambrosino, L., Albini, A., Noonan, D. M., Sansone, C., & Brunet, C. (2021). Insights into phenolic compounds from microalgae: Structural variety and complex beneficial activities from health to nutraceutics. Critical Reviews in Biotechnology, 41(2), 155-171. [Google Scholar]
- Deniz, I., Ozen, M. O., & Yesil-Celiktas, O. (2016). Supercritical fluid extraction of phycocyanin and investigation of cytotoxicity on human lung cancer cells. The Journal of Supercritical Fluids, 108, 13-18. [Google Scholar]
- Deniz Şirinyıldız, D., & Yorulmaz, A. (2022). Alternatif ve sürdürülebilir bir gıda kaynağı olarak algler. Toros University Journal of Food Nutrition and Gastronomy, 1(1), 101-117. [Google Scholar]
- Ejike, C. E., Collins, S. A., Balasuriya, N., Swanson, A. K., Mason, B., & Udenigwe, C. C. (2017). Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends in Food Science & Technology, 59, 30-36. [Google Scholar]
- Gantar, M., Dhandayuthapani, S., & Rathinavelu, A. (2012). Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. Journal of medicinal food, 15(12), 1091-1095. [Google Scholar]
- Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine drugs, 9(4), 625-644. [Google Scholar]
- Herrero, M., Ibáñez, E., Cifuentes, A., Reglero, G., & Santoyo, S. (2006). Dunaliella salina microalga pressurized liquid extracts as potential antimicrobials. Journal of food protection, 69(10), 2471-2477. [Google Scholar]
- İlter, I., Akyıl, S., Koç, M., & Kaymak-Ertekin, F. (2017). Alglerden elde edilen ve gıdalarda doğal renklendirici olarak kullanılan pigmentler ve fonksiyonel özellikleri. Turkish Journal of Agriculture-Food Science and Technology, 5(12), 1508-1515. [Google Scholar]
- Ko, S. C., Kim, D., & Jeon, Y. J. (2012). Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food and chemical toxicology, 50(7), 2294-2302. [Google Scholar]
- Lee, S. H., Chang, D. U., Lee, B. J., & Jeon, Y. J. (2009). Antioxidant activity of solubilized Tetraselmis suecica and Chlorella ellipsoidea by enzymatic digests. Journal of Food Science and Nutrition, 14(1), 21-28. [Google Scholar]
- Leya, T., Rahn, A., Lütz, C., & Remias, D. (2009). Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS microbiology ecology, 67(3), 432-443. [Google Scholar]
- Li, H. B., Cheng, K. W., Wong, C. C., Fan, K. W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food chemistry, 102(3), 771-776. [Google Scholar]
- Matsukawa, R., Hotta, M., Masuda, Y., Chihara, M., & Karube, I. (2000). Antioxidants from carbon dioxide fixing Chlorella sorokiniana. Journal of applied phycology, 12, 263-267. [Google Scholar]
- Neumann, U., Derwenskus, F., Flaiz Flister, V., Schmid-Staiger, U., Hirth, T., & Bischoff, S. C. (2019). Fucoxanthin, a carotenoid derived from Phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro. Antioxidants, 8(6), 183. [Google Scholar]
- Orosa, M., Valero, J. F., Herrero, C., & Abalde, J. (2001). Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnology Letters, 23, 1079-1085. [Google Scholar]
- Pasquet, V., Morisset, P., Ihammouine, S., Chepied, A., Aumailley, L., Berard, J. B., ... & Picot, L. (2011). Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine drugs, 9(5), 819-831. [Google Scholar]
- Prabakaran, G., Sampathkumar, P., Kavisri, M., & Moovendhan, M. (2020). Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. International Journal of Biological Macromolecules, 153, 256-263. [Google Scholar]
- Petrushkina, M., Gusev, E., Sorokin, B., Zotko, N., Mamaeva, A., Filimonova, A., ... & Kuzmin, D. (2017). Fucoxanthin production by heterokont microalgae. Algal Research, 24, 387-393. [Google Scholar]
- Pina-Pérez, M. C., Rivas, A., Martínez, A., & Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food chemistry, 235, 34-44. [Google Scholar]
- Remias, D., Lütz-Meindl, U., & Lütz, C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology, 40(3), 259-268. [Google Scholar]
- Rodriguez-Garcia, I., & Guil-Guerrero, J. L. (2008). Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food chemistry, 108(3), 1023-1026. [Google Scholar]
- Safaei, M., Maleki, H., Soleimanpour, H., Norouzy, A., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2019). Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Scientific reports, 9(1), 9474. [Google Scholar]
- Samarakoon, K. W., Ko, J. Y., Rahman, S. M. M., Lee, J. H., Kang, M. C., Kwon, O. N., ... & Jeon, Y. J. (2013). In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae, 28(1), 111-119. [Google Scholar]
- Sasa, A., Şentürk, F., Üstündağ, Y., & Erem, F., (2020). Alglerin gıda veya gıda bileşeni olarak kullanımı ve sağlık üzerine etkileri. Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, 2(2), 97-110. [Google Scholar]
- Sevencan, A. (2019). Mikroalg Nedir? Biyoaktif Bileşenleri Nelerdir? Nasıl Yetiştirilir? Güncel Konular. URL: https://www.birbes.com/?p=19005. Date of Access: August 17 2023. [Google Scholar]
- Singh, D. P., Khattar, J. S., Rajput, A., Chaudhary, R., & Singh, R. (2019). High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1. 1 under optimized culture conditions. PloS one, 14(9), e0221930. [Google Scholar]
- Stirk, W. A., & van Staden, J. (2022). Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnology Advances, 59, 107977. [Google Scholar]
- Sun, H., Zhao, W., Mao, X., Li, Y., Wu, T., & Chen, F. (2018). High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotechnology for biofuels, 11, 1-23. [Google Scholar]
- Türkmen, A., & Akyurt, İ. (2021). Antiviral Effects of Microalgae. Turkish JAF Sci. Tech, 412-419. [Google Scholar]
- Tsvetanova, F., & Yankov, D. (2022). Bioactive compounds from red microalgae with therapeutic and nutritional value. Microorganisms, 10(11), 2290. [Google Scholar]
- Uzuner, S., & Haznedar, A. (2020). Fonksiyonel Gıda İçin Sağlıklı Takviye: Mikroalgler. Sinop Üniversitesi Fen Bilimleri Dergisi, 5(2), 212-226. [Google Scholar]
- Zhou, L., Li, K., Duan, X., Hill, D., Barrow, C., Dunshea, F., ... & Suleria, H. (2022). Bioactive compounds in microalgae and their potential health benefits. Food Bioscience, 101932.Algae [Google Scholar]
|