International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(2) 241-251

Strigolactones Affect Growth Parameters and Some Antioxidant Enzyme Activities in Wheat (Triticum aestivum L.) under Salt Stress

Ezgi Önay & Sefer Demirbaş

pp. 241 - 251   |  DOI:

Published online: June 29, 2023  |   Number of Views: 32  |  Number of Download: 88


External applications of strigolactones affect plant growth positively owing to the potential of adapting plants to the tolerance system under stress conditions. In this study, the effect of synthetic analogue strigolactone (GR24) pre-treatment to the seeds of salt-tolerant and salt-sensitive bread wheat (Triticum aestivum L.) varieties on growth parameters, antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activity under salt stress were investigated. Salt stress has inhibited shoot development. Root development of the tolerant one was better than sensitive one under salt stress conditions. Salt application to sensitive variety caused the inhibition of APX and GR activities, and pre-treatment increased these activities. In conclusion, GR24 pre-treatment has an encouraging role in the growth of wheat plants by stimulating these antioxidant enzymes against salinity.

Keywords: Antioxidant Defence System, GR-24, Salinity, Seed Priming, Tolerance

How to Cite this Article

APA 6th edition
Onay, E. & Demirbas, S. (2023). Strigolactones Affect Growth Parameters and Some Antioxidant Enzyme Activities in Wheat (Triticum aestivum L.) under Salt Stress . International Journal of Innovative Approaches in Agricultural Research, 7(2), 241-251. doi: 10.29329/ijiaar.2023.568.8

Onay, E. and Demirbas, S. (2023). Strigolactones Affect Growth Parameters and Some Antioxidant Enzyme Activities in Wheat (Triticum aestivum L.) under Salt Stress . International Journal of Innovative Approaches in Agricultural Research, 7(2), pp. 241-251.

Chicago 16th edition
Onay, Ezgi and Sefer Demirbas (2023). "Strigolactones Affect Growth Parameters and Some Antioxidant Enzyme Activities in Wheat (Triticum aestivum L.) under Salt Stress ". International Journal of Innovative Approaches in Agricultural Research 7 (2):241-251. doi:10.29329/ijiaar.2023.568.8.

  1. Aliche, E.B., Screpanti, C., De Mesmaeker, A., Munnik, T., & Bouwmeester, H.J. (2020). Science and application of strigolactones. New Phytologist, 227(4), 1001-1011. [Google Scholar]
  2. Anonymous (2022). Food and Agriculture Organization of the United Nations (FAO). Retrieved from [Google Scholar]
  3. Bartoli, C.G., Buet, A., Gergoff, G., Galatro, A.V., & Simontacchi, M.S. (2017). Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In M.A., Hossain, S. Munné-Bosch, D.V. Burritt, P. Diaz-Vivancos, M. Fujita, A. Lorence (Eds.). Ascorbic acid in plant growth, development and stress tolerance (pp. 177-200). Springer, Cham. [Google Scholar]
  4. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. [Google Scholar]
  5. Bradford, M.M. (1976). A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [Google Scholar]
  6. Çeri, S., & Acar, R. (2019). Serin İklim Tahıllarının Hayvan Beslemede Yeşil ve Kuru Ot Olarak Kullanımı Use of Cool Climate Cereals as Green and Dry Forage in Animal Feeding. 8(1), 178-194. [Google Scholar]
  7. Courtney, A.J., Xu, J., & Xu, Y. (2016). Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity. Plant Physiology and Biochemistry, 99, 162-170. [Google Scholar]
  8. Demirbas, S., & Acar, O. (2008). Superoxide dismutase and peroxidase activities from antioxidative enzymes in Helianthus annuus L. roots during Orobanche cumana Wallr. penetration. Fresenius Environmental Bulletin, 17(8a), 1038-1044. [Google Scholar]
  9. Foyer, C.H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133(1), 21-25. [Google Scholar]
  10. Giannipolities, N., & Ries, S.K. (1977). Superoxide dismutase occurance in higher plants. Plant Physiology, 59, 309-314. [Google Scholar]
  11. Günay, E., Teker Yıldız, M., & Acar, O. (2022). Effects of different priming treatments on germination and seedling growth of wheat under drought stress. ÇOMÜ Zir. Fak. Derg. (COMU J. Agric. Fac.), 10(2), 303-311. [Google Scholar]
  12. Hasanuzzaman, M., Bhuyan, M.H.M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the Crucial role of a universal defense regulator. Antioxidants, 9(8), 681. [Google Scholar]
  13. Jisha, K.C., Vijayakumari, K., & Puthur, J.T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiol Plant, 35, 1351-1396. [Google Scholar]
  14. Kapulnik, Y., Delaux, P.-M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Séjalon-Delmas, N., Combier, J.-P., Bécard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., & Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209-216. [Google Scholar]
  15. Kausar, F., & Shahbaz, M. (2017). Influence of strigolactone (GR24) as a seed treatment on growth, gas exchange and chlorophyll fluorescence of wheat under saline conditions. International Journal of Agriculture and Biology, 19(2), 321-327. [Google Scholar]
  16. Ling, F., Su, Q., Jiang, H., Cui, J., He, X., Wu, Z., Zhang, Z., Liu, J., & Zhao, Y. (2020). Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Scientific Reports, 10(1), 1-8. [Google Scholar]
  17. Luo, N., Yu, X., Liu, J., & Jiang, Y. (2012). Nucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon. Plant Science, 197, 122-129. [Google Scholar]
  18. Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., & Zhang, C. (2017). Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 8(September), 1-15. [Google Scholar]
  19. Molero, G., Joynson, R., Pinera‐Chavez, F.J., Gardiner, L.-J., Rivera‐Amado, C., Hall, A., & Reynolds, M.P. (2019). Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnology Journal, 17, 1276-1288. [Google Scholar]
  20. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. [Google Scholar]
  21. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 867-880. [Google Scholar]
  22. Saddiq, M.S., Iqbal, S., Hafeez, M.B., Ibrahim, A.M.H., Raza, A., Fatima, E.M., Baloch, H., et al. (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy, 11(6), 1193. [Google Scholar]
  23. Sedaghat, M., Emam, Y., Mokhtassi-Bidgoli, A., Hazrati, S., Lovisolo, C., Visentin, I., Cardinale, F., Tahmasebi-Sarvestani, Z., & Alamillo, J.M. (2021). The potential of the synthetic strigolactone analogue GR24 for the maintenance of photosynthesis and yield in winter wheat under drought: Investigations on the mechanisms of action and delivery modes. Plants, 10(6), 1223. [Google Scholar]
  24. Sedaghat, M., Sarvestani, Z.T., Emam, Y., & Bidgoli, A.M. (2017). Do phytohormones influence the grain quality and yield of winter wheat under drought conditions? Journal of Advanced Agricultural Technologies, 4(2), 151-158. [Google Scholar]
  25. Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., & Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195-200. [Google Scholar]
  26. Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novák, O., Strnad, M., Lovisolo, C., Schubert, A., & Cardinale, F. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 212(4), 954-963. [Google Scholar]
  27. Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324. [Google Scholar]
  28. Zörb, C., Geilfus, C.M., & Dietz, K.J. (2019). Salinity and crop yield. Plant Biology, 21(Suppl. 1), 31-38. [Google Scholar]