- Aliche, E.B., Screpanti, C., De Mesmaeker, A., Munnik, T., & Bouwmeester, H.J. (2020). Science and application of strigolactones. New Phytologist, 227(4), 1001-1011. [Google Scholar]
- Anonymous (2022). Food and Agriculture Organization of the United Nations (FAO). Retrieved from https://www.fao.org/giews/countrybrief/country.jsp?code=TUR&lang=en [Google Scholar]
- Bartoli, C.G., Buet, A., Gergoff, G., Galatro, A.V., & Simontacchi, M.S. (2017). Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In M.A., Hossain, S. Munné-Bosch, D.V. Burritt, P. Diaz-Vivancos, M. Fujita, A. Lorence (Eds.). Ascorbic acid in plant growth, development and stress tolerance (pp. 177-200). Springer, Cham. [Google Scholar]
- Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. [Google Scholar]
- Bradford, M.M. (1976). A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. [Google Scholar]
- Çeri, S., & Acar, R. (2019). Serin İklim Tahıllarının Hayvan Beslemede Yeşil ve Kuru Ot Olarak Kullanımı Use of Cool Climate Cereals as Green and Dry Forage in Animal Feeding. 8(1), 178-194. [Google Scholar]
- Courtney, A.J., Xu, J., & Xu, Y. (2016). Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity. Plant Physiology and Biochemistry, 99, 162-170. [Google Scholar]
- Demirbas, S., & Acar, O. (2008). Superoxide dismutase and peroxidase activities from antioxidative enzymes in Helianthus annuus L. roots during Orobanche cumana Wallr. penetration. Fresenius Environmental Bulletin, 17(8a), 1038-1044. [Google Scholar]
- Foyer, C.H., & Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133(1), 21-25. [Google Scholar]
- Giannipolities, N., & Ries, S.K. (1977). Superoxide dismutase occurance in higher plants. Plant Physiology, 59, 309-314. [Google Scholar]
- Günay, E., Teker Yıldız, M., & Acar, O. (2022). Effects of different priming treatments on germination and seedling growth of wheat under drought stress. ÇOMÜ Zir. Fak. Derg. (COMU J. Agric. Fac.), 10(2), 303-311. [Google Scholar]
- Hasanuzzaman, M., Bhuyan, M.H.M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., et al. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the Crucial role of a universal defense regulator. Antioxidants, 9(8), 681. [Google Scholar]
- Jisha, K.C., Vijayakumari, K., & Puthur, J.T. (2013). Seed priming for abiotic stress tolerance: An overview. Acta Physiol Plant, 35, 1351-1396. [Google Scholar]
- Kapulnik, Y., Delaux, P.-M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Séjalon-Delmas, N., Combier, J.-P., Bécard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., & Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209-216. [Google Scholar]
- Kausar, F., & Shahbaz, M. (2017). Influence of strigolactone (GR24) as a seed treatment on growth, gas exchange and chlorophyll fluorescence of wheat under saline conditions. International Journal of Agriculture and Biology, 19(2), 321-327. [Google Scholar]
- Ling, F., Su, Q., Jiang, H., Cui, J., He, X., Wu, Z., Zhang, Z., Liu, J., & Zhao, Y. (2020). Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Scientific Reports, 10(1), 1-8. [Google Scholar]
- Luo, N., Yu, X., Liu, J., & Jiang, Y. (2012). Nucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon. Plant Science, 197, 122-129. [Google Scholar]
- Ma, N., Hu, C., Wan, L., Hu, Q., Xiong, J., & Zhang, C. (2017). Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science, 8(September), 1-15. [Google Scholar]
- Molero, G., Joynson, R., Pinera‐Chavez, F.J., Gardiner, L.-J., Rivera‐Amado, C., Hall, A., & Reynolds, M.P. (2019). Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. Plant Biotechnology Journal, 17, 1276-1288. [Google Scholar]
- Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. [Google Scholar]
- Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 867-880. [Google Scholar]
- Saddiq, M.S., Iqbal, S., Hafeez, M.B., Ibrahim, A.M.H., Raza, A., Fatima, E.M., Baloch, H., et al. (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy, 11(6), 1193. [Google Scholar]
- Sedaghat, M., Emam, Y., Mokhtassi-Bidgoli, A., Hazrati, S., Lovisolo, C., Visentin, I., Cardinale, F., Tahmasebi-Sarvestani, Z., & Alamillo, J.M. (2021). The potential of the synthetic strigolactone analogue GR24 for the maintenance of photosynthesis and yield in winter wheat under drought: Investigations on the mechanisms of action and delivery modes. Plants, 10(6), 1223. [Google Scholar]
- Sedaghat, M., Sarvestani, Z.T., Emam, Y., & Bidgoli, A.M. (2017). Do phytohormones influence the grain quality and yield of winter wheat under drought conditions? Journal of Advanced Agricultural Technologies, 4(2), 151-158. [Google Scholar]
- Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., & Yamaguchi, S. (2008). Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210), 195-200. [Google Scholar]
- Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter-Spira, C., Novák, O., Strnad, M., Lovisolo, C., Schubert, A., & Cardinale, F. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 212(4), 954-963. [Google Scholar]
- Zhu, J.K. (2016). Abiotic stress signaling and responses in plants. Cell, 167(2), 313-324. [Google Scholar]
- Zörb, C., Geilfus, C.M., & Dietz, K.J. (2019). Salinity and crop yield. Plant Biology, 21(Suppl. 1), 31-38. [Google Scholar]
|