International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(1) 40-52

Micro-Climatic effect on Cotton Yield, quality, Bt toxin & GT Gene

Muhammad Asif Saleem, Mirza Muhammad Ahad Baig, Muhammad Qadir Ahmad, Zia Ullah Zia, Muhammad Asif & Muhammad Nauman

pp. 40 - 52   |  DOI: https://doi.org/10.29329/ijiaar.2023.536.3

Published online: March 29, 2023  |   Number of Views: 116  |  Number of Download: 185


Abstract

Unsuitable change in climatic conditions cause decline in quality and yield of major crops. Plant growth is directly affected if temperature, rainfall or humidity are not optimum. A multi-location and multi season evaluation of climatic effects on quality and yield may produce a reliable data for future breeding. A set of 39 upcoming varieties of cotton were evaluated on six different Micro-climatic locations of Punjab i.e. Multan, Bahawalpur, Sahiwal, Rahimyar khan, Vehari and Faisalabad in a triplicated trial. The experiment was repeated next year on same locations. Data for three key environmental factors such as temperature, rainfall and humidity was recorded at each station. The crop was analyzed for yield, fiber length, fiber strength and fiber fineness. The genotypes were also evaluated for Bt toxin and Glyphosate tolerance gene (GTG). The analysis revealed that high temperature has negative effect on yield, Bt expression, fineness, uniformity and GTG. Precipitation and humidity had positive effect on fiber fineness and uniformity, whereas, negative effect of both environmental factors was recorded for fiber length and strength. Increase in precipitation at early cropping stage was associated with increase in yield whereas higher humidity has negative impact on yield. As compared to high average temperature and number of days above 400C, cotton yield is more sensitive to heat waves (maximum temperature). Varieties with high temperature tolerance in cotton should be breed for climate change scenario.

Keywords: Cotton, Climate Change, Gene Expression, Heat waves


How to Cite this Article

APA 6th edition
Saleem, M.A., Baig, M.M.A., Ahmad, M.Q., Zia, Z.U., Asif, M. & Nauman, M. (2023). Micro-Climatic effect on Cotton Yield, quality, Bt toxin & GT Gene . International Journal of Innovative Approaches in Agricultural Research, 7(1), 40-52. doi: 10.29329/ijiaar.2023.536.3

Harvard
Saleem, M., Baig, M., Ahmad, M., Zia, Z., Asif, M. and Nauman, M. (2023). Micro-Climatic effect on Cotton Yield, quality, Bt toxin & GT Gene . International Journal of Innovative Approaches in Agricultural Research, 7(1), pp. 40-52.

Chicago 16th edition
Saleem, Muhammad Asif, Mirza Muhammad Ahad Baig, Muhammad Qadir Ahmad, Zia Ullah Zia, Muhammad Asif and Muhammad Nauman (2023). "Micro-Climatic effect on Cotton Yield, quality, Bt toxin & GT Gene ". International Journal of Innovative Approaches in Agricultural Research 7 (1):40-52. doi:10.29329/ijiaar.2023.536.3.

References
  1. Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., & Hoogenboom, G. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42-55. [Google Scholar]
  2. Abbas, S., & Waheed, A. (2017). Trade competitiveness of Pakistan: evidence from the revealed comparative advantage approach. Competitiveness Review: An International Business Journal. [Google Scholar]
  3. Asif, M., Mirza, J. I., & Zafar, Y. (2008). Genetic analysis for fiber quality traits of some cotton genotypes. Pakistan Journal of Botany, 40(3), 1209-1215. [Google Scholar]
  4. Baloch, M. S., Awan, I. U., Jatoi, S. A., Hussain, I., & Khan, B. U. (2000). Evaluation of seeding densities in broadcast wet seeded rice. J Pure & Appl Sci, 19(1), 63-65. [Google Scholar]
  5. Bange, M. P., & Milroy, S. P. (2004). Impact of short-term exposure to cold night temperatures on early development of cotton (Gossypium hirsutum L.). Australian journal of agricultural research, 55(6), 655-664. [Google Scholar]
  6. Brown, R. S., Oosterhuis, D. M., Coker, D. L., & Fowler, L. (2003). The dynamics of dry matter partitioning in the cotton boll of modern and obsolete cultivars. In Proceedings Beltwide Cotton Conferences, National Cotton Council, Memphis, Tenn (pp. 1886-1889). [Google Scholar]
  7. Chen, S., Chen, X., & Xu, J. (2016). Impacts of climate change on agriculture: Evidence from China. Journal of Environmental Economics and Management, 76, 105-124. [Google Scholar]
  8. Cottee, N. S., Tan, D. K. Y., Bange, M. P., Cothren, J. T., & Campbell, L. C. (2010). Multi‐level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Science, 50(6), 2553-2564. [Google Scholar]
  9. Dewey, R. D., & Lu, K. H. (1959). A correlation and phenotypic correlation analysis of some quality characters and yield of seed cotton in upland cotton (Gossypium hirsutum L.). J. Biol. Sci, 1, 235-236. [Google Scholar]
  10. Gammans, M., Mérel, P., & Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: statistical evidence from France. Environmental Research Letters, 12(5), 054007. [Google Scholar]
  11. Gipson, J. R., & Joham, H. E. (1969). Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). III. fiber elongation 1. Crop Science, 9(2), 127-129. [Google Scholar]
  12. Gipson, J. R., & Ray, L. L. (1969). Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperature 1. Crop Science, 9(3), 339-341. [Google Scholar]
  13. Gwimbi, P., & Mundoga, T. (2010). Impact of climate change on cotton production under rainfed conditions: case of Gokwe. Journal of Sustainable Development in Africa, 12(8), 59-69. [Google Scholar]
  14. Hesketh, J. D., & Low, A. (1968). Effect of temperature on components of yield and fibre quality of cotton varieties of diverse origin. Empire Cotton Growing Rev. [Google Scholar]
  15. Hesketh, J. D., Baker, D. N., & Duncan, W. G. (1972). Simulation of Growth and Yield in Cotton: III. Environmental Control of Morphogenesis 1. Crop Science, 12(4), 436-439. [Google Scholar]
  16. Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50), 19691-19696. [Google Scholar]
  17. Huang, H., R. Liu, Y. Han, J. Hao, C. Liu and S. Fan. 2021. Effects of exogenous spermidine on polyamine metabolism in lettuce (Lactuca sativa L.) Under high-temperature stress. Pak. J. Bot., 53(5): 1571-1582. [Google Scholar]
  18. IPCC, 2013. Summary for policymakers, in: climate change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 33. http://dx.doi.org/10.1017/ CBO9781107415324. [Google Scholar]
  19. Iqbal, M., Ul-Allah, S., Naeem, M., Ijaz, M., Sattar, A., & Sher, A. (2017). Response of cotton genotypes to water and heat stress: from field to genes. Euphytica, 213(6), 1-11. [Google Scholar]
  20. Jun, W. A. N. G., Yuan, C. H. E. N., YAO, M. H., Yuan, L. I., WEN, Y. J., Zhang, X., & CHEN, D. H. (2015). The effects of high temperature level on square Bt protein concentration of Bt cotton. Journal of Integrative Agriculture, 14(10), 1971-1979. [Google Scholar]
  21. Kaiser, H., & Drennen, T. (1993). Agricultural dimensions of global climate change. CRC Press. [Google Scholar]
  22. Karademir, E., Karademir, Ç., EKININCI, R., & Gençer, O. (2010). Relationship between yield, fiber length and other fiber-related traits in advanced cotton strains. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 111-116. [Google Scholar]
  23. Kranthi, K. R., Naidu, S., Dhawad, C. S., Tatwawadi, A., Mate, K., Patil, E., ... & Kranthi, S. (2005). Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hübner)(Noctuidae: Lepidoptera). Current Science, 291-298. [Google Scholar]
  24. Méndez-Natera, J. R., Rondón, A., Hernández, J., & Merazo-Pinto, J. F. (2012). Genetic studies in upland cotton. III. Genetic parameters, correlation and path analysis. Sabrao. J. Breeding & Genetics, 44(1), 112-128. [Google Scholar]
  25. Mohamed HI, Mbdel-Hamid AME. Molecular and biochemical studies for heat tolerance on four cotton genotypes. Rom Biotechnol Lett. 2013;18:7223–31. [Google Scholar]
  26. Mercado Álvarez, K., Bertero, H. D., Paytas, M. J., & Ploschuk, E. L. (2022). Mesophyll conductance modulates photosynthetic rate in cotton crops exposed to heat stress under field conditions. Journal of Agronomy and Crop Science, 208(1), 53-64. [Google Scholar]
  27. Oosterhuis, D. M. (2002). Day or night high temperatures: A major cause of yield variability. Cotton grower, 46(9), 8-9. [Google Scholar]
  28. Rahman, H.U., Malik, S.A., and Saleem, M. (2004). Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research 85: 149–158 [Google Scholar]
  29. Reddy, K. R., Hodges, H. F., & Reddy, V. R. (1992). Temperature effects on cotton fruit retention. Agronomy journal, 84(1), 26-30. [Google Scholar]
  30. Saleem, M. F., Bilal, M. F., Awais, M., Shahid, M. Q., & Anjum, S. A. (2010). Effect of nitrogen on seed cotton yield and fiber qualities of cotton (Gossypium hirsutum L.) cultivars. The Journal of Animal & Plant Sciences, 20(1), 23-27. [Google Scholar]
  31. Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010. [Google Scholar]
  32. Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences, 106(37), 15594-15598. [Google Scholar]
  33. Siddiqui, R., Samad, G., Nasir, M., & Jalil, H. H. (2012). The impact of climate change on major agricultural crops: evidence from Punjab, Pakistan. The Pakistan Development Review, 261-274. [Google Scholar]
  34. Snider, J. L., Oosterhuis, D. M., & Kawakami, E. M. (2010). Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiologia plantarum, 138(3), 268-277. [Google Scholar]
  35. Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics, a biometrical approach (No. Ed. 2). McGraw-Hill Kogakusha, Ltd.. [Google Scholar]
  36. US Natl. Res. Counc. 2016.Attribution of Extreme Weather Events in the Context of Climate Change.Washington, DC: Natl. Acad. [Google Scholar]
  37. Weart, S. R. (2004). The discovery of global warming. Harvard University Press. [Google Scholar]
  38. Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 107(33), 14562-14567. [Google Scholar]
  39. Wenqing, Z., Youhua, W., Hongmei, S., Jian, L., & Zhiguo, Z. (2012). Sowing date and boll position affected boll weight, fiber quality and fiber physiological parameters in two cotton (Gossypium hirsutum L.) cultivars. African Journal of Agricultural Research, 7(45), 6073-6081. [Google Scholar]
  40. Yousaf, M. I., Hussain, Q., Alwahibi, M. S., Aslam, M. Z., Khalid, M. Z., Hussain, S., ... & Elshikh, M. S. (2023). Impact of heat stress on agro-morphological, physio-chemical and fiber related paramters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University-Science, 35(1), 102379. [Google Scholar]
  41. Zeng, L., & Pettigrew, W. T. (2015). Combining ability, heritability, and genotypic correlations for lint yield and fiber quality of upland cotton in delayed planting. Field Crops Research, 171, 176-183. [Google Scholar]
  42. Zhang, W., Lu, Y., van der Werf, W., Huang, J., Wu, F., Zhou, K., ... & Rosegrant, M. W. (2018). Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proceedings of the National Academy of Sciences, 115(33), E7700-E7709. [Google Scholar]
  43. Zhang, X., RUI, Q. Z., LIANG, P. P., WEI, C. H., DENG, G. Q., Yuan, C. H. E. N., ... & CHEN, D. H. (2018). Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism. Journal of Integrative Agriculture, 17(9), 1991-1998. [Google Scholar]
  44. Zhao, D., Reddy, K. R., Kakani, V. G., Koti, S., & Gao, W. (2005). Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet‐B radiation. Physiologia Plantarum, 124(2), 189-199. [Google Scholar]