- Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., & Hoogenboom, G. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42-55. [Google Scholar]
- Abbas, S., & Waheed, A. (2017). Trade competitiveness of Pakistan: evidence from the revealed comparative advantage approach. Competitiveness Review: An International Business Journal. [Google Scholar]
- Asif, M., Mirza, J. I., & Zafar, Y. (2008). Genetic analysis for fiber quality traits of some cotton genotypes. Pakistan Journal of Botany, 40(3), 1209-1215. [Google Scholar]
- Baloch, M. S., Awan, I. U., Jatoi, S. A., Hussain, I., & Khan, B. U. (2000). Evaluation of seeding densities in broadcast wet seeded rice. J Pure & Appl Sci, 19(1), 63-65. [Google Scholar]
- Bange, M. P., & Milroy, S. P. (2004). Impact of short-term exposure to cold night temperatures on early development of cotton (Gossypium hirsutum L.). Australian journal of agricultural research, 55(6), 655-664. [Google Scholar]
- Brown, R. S., Oosterhuis, D. M., Coker, D. L., & Fowler, L. (2003). The dynamics of dry matter partitioning in the cotton boll of modern and obsolete cultivars. In Proceedings Beltwide Cotton Conferences, National Cotton Council, Memphis, Tenn (pp. 1886-1889). [Google Scholar]
- Chen, S., Chen, X., & Xu, J. (2016). Impacts of climate change on agriculture: Evidence from China. Journal of Environmental Economics and Management, 76, 105-124. [Google Scholar]
- Cottee, N. S., Tan, D. K. Y., Bange, M. P., Cothren, J. T., & Campbell, L. C. (2010). Multi‐level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Science, 50(6), 2553-2564. [Google Scholar]
- Dewey, R. D., & Lu, K. H. (1959). A correlation and phenotypic correlation analysis of some quality characters and yield of seed cotton in upland cotton (Gossypium hirsutum L.). J. Biol. Sci, 1, 235-236. [Google Scholar]
- Gammans, M., Mérel, P., & Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: statistical evidence from France. Environmental Research Letters, 12(5), 054007. [Google Scholar]
- Gipson, J. R., & Joham, H. E. (1969). Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). III. fiber elongation 1. Crop Science, 9(2), 127-129. [Google Scholar]
- Gipson, J. R., & Ray, L. L. (1969). Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperature 1. Crop Science, 9(3), 339-341. [Google Scholar]
- Gwimbi, P., & Mundoga, T. (2010). Impact of climate change on cotton production under rainfed conditions: case of Gokwe. Journal of Sustainable Development in Africa, 12(8), 59-69. [Google Scholar]
- Hesketh, J. D., & Low, A. (1968). Effect of temperature on components of yield and fibre quality of cotton varieties of diverse origin. Empire Cotton Growing Rev. [Google Scholar]
- Hesketh, J. D., Baker, D. N., & Duncan, W. G. (1972). Simulation of Growth and Yield in Cotton: III. Environmental Control of Morphogenesis 1. Crop Science, 12(4), 436-439. [Google Scholar]
- Howden, S. M., Soussana, J. F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50), 19691-19696. [Google Scholar]
- Huang, H., R. Liu, Y. Han, J. Hao, C. Liu and S. Fan. 2021. Effects of exogenous spermidine on polyamine metabolism in lettuce (Lactuca sativa L.) Under high-temperature stress. Pak. J. Bot., 53(5): 1571-1582. [Google Scholar]
- IPCC, 2013. Summary for policymakers, in: climate change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. pp. 33. http://dx.doi.org/10.1017/ CBO9781107415324. [Google Scholar]
- Iqbal, M., Ul-Allah, S., Naeem, M., Ijaz, M., Sattar, A., & Sher, A. (2017). Response of cotton genotypes to water and heat stress: from field to genes. Euphytica, 213(6), 1-11. [Google Scholar]
- Jun, W. A. N. G., Yuan, C. H. E. N., YAO, M. H., Yuan, L. I., WEN, Y. J., Zhang, X., & CHEN, D. H. (2015). The effects of high temperature level on square Bt protein concentration of Bt cotton. Journal of Integrative Agriculture, 14(10), 1971-1979. [Google Scholar]
- Kaiser, H., & Drennen, T. (1993). Agricultural dimensions of global climate change. CRC Press. [Google Scholar]
- Karademir, E., Karademir, Ç., EKININCI, R., & Gençer, O. (2010). Relationship between yield, fiber length and other fiber-related traits in advanced cotton strains. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 111-116. [Google Scholar]
- Kranthi, K. R., Naidu, S., Dhawad, C. S., Tatwawadi, A., Mate, K., Patil, E., ... & Kranthi, S. (2005). Temporal and intra-plant variability of Cry1Ac expression in Bt-cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hübner)(Noctuidae: Lepidoptera). Current Science, 291-298. [Google Scholar]
- Méndez-Natera, J. R., Rondón, A., Hernández, J., & Merazo-Pinto, J. F. (2012). Genetic studies in upland cotton. III. Genetic parameters, correlation and path analysis. Sabrao. J. Breeding & Genetics, 44(1), 112-128. [Google Scholar]
- Mohamed HI, Mbdel-Hamid AME. Molecular and biochemical studies for heat tolerance on four cotton genotypes. Rom Biotechnol Lett. 2013;18:7223–31. [Google Scholar]
- Mercado Álvarez, K., Bertero, H. D., Paytas, M. J., & Ploschuk, E. L. (2022). Mesophyll conductance modulates photosynthetic rate in cotton crops exposed to heat stress under field conditions. Journal of Agronomy and Crop Science, 208(1), 53-64. [Google Scholar]
- Oosterhuis, D. M. (2002). Day or night high temperatures: A major cause of yield variability. Cotton grower, 46(9), 8-9. [Google Scholar]
- Rahman, H.U., Malik, S.A., and Saleem, M. (2004). Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research 85: 149–158 [Google Scholar]
- Reddy, K. R., Hodges, H. F., & Reddy, V. R. (1992). Temperature effects on cotton fruit retention. Agronomy journal, 84(1), 26-30. [Google Scholar]
- Saleem, M. F., Bilal, M. F., Awais, M., Shahid, M. Q., & Anjum, S. A. (2010). Effect of nitrogen on seed cotton yield and fiber qualities of cotton (Gossypium hirsutum L.) cultivars. The Journal of Animal & Plant Sciences, 20(1), 23-27. [Google Scholar]
- Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010. [Google Scholar]
- Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences, 106(37), 15594-15598. [Google Scholar]
- Siddiqui, R., Samad, G., Nasir, M., & Jalil, H. H. (2012). The impact of climate change on major agricultural crops: evidence from Punjab, Pakistan. The Pakistan Development Review, 261-274. [Google Scholar]
- Snider, J. L., Oosterhuis, D. M., & Kawakami, E. M. (2010). Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiologia plantarum, 138(3), 268-277. [Google Scholar]
- Steel, R. G. D., & Torrie, J. H. (1980). Principles and procedures of statistics, a biometrical approach (No. Ed. 2). McGraw-Hill Kogakusha, Ltd.. [Google Scholar]
- US Natl. Res. Counc. 2016.Attribution of Extreme Weather Events in the Context of Climate Change.Washington, DC: Natl. Acad. [Google Scholar]
- Weart, S. R. (2004). The discovery of global warming. Harvard University Press. [Google Scholar]
- Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences, 107(33), 14562-14567. [Google Scholar]
- Wenqing, Z., Youhua, W., Hongmei, S., Jian, L., & Zhiguo, Z. (2012). Sowing date and boll position affected boll weight, fiber quality and fiber physiological parameters in two cotton (Gossypium hirsutum L.) cultivars. African Journal of Agricultural Research, 7(45), 6073-6081. [Google Scholar]
- Yousaf, M. I., Hussain, Q., Alwahibi, M. S., Aslam, M. Z., Khalid, M. Z., Hussain, S., ... & Elshikh, M. S. (2023). Impact of heat stress on agro-morphological, physio-chemical and fiber related paramters in upland cotton (Gossypium hirsutum L.) genotypes. Journal of King Saud University-Science, 35(1), 102379. [Google Scholar]
- Zeng, L., & Pettigrew, W. T. (2015). Combining ability, heritability, and genotypic correlations for lint yield and fiber quality of upland cotton in delayed planting. Field Crops Research, 171, 176-183. [Google Scholar]
- Zhang, W., Lu, Y., van der Werf, W., Huang, J., Wu, F., Zhou, K., ... & Rosegrant, M. W. (2018). Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proceedings of the National Academy of Sciences, 115(33), E7700-E7709. [Google Scholar]
- Zhang, X., RUI, Q. Z., LIANG, P. P., WEI, C. H., DENG, G. Q., Yuan, C. H. E. N., ... & CHEN, D. H. (2018). Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism. Journal of Integrative Agriculture, 17(9), 1991-1998. [Google Scholar]
- Zhao, D., Reddy, K. R., Kakani, V. G., Koti, S., & Gao, W. (2005). Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet‐B radiation. Physiologia Plantarum, 124(2), 189-199. [Google Scholar]
|