Pen Academic Publishing   |  e-ISSN: 2602-4772

Review article | International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(3) 384-395

Genetic Analysis of Yellow Rust Resistance in Wheat

Ezgi Çabuk, Yıldız Aydın & Ahu Altınkut Uncuoğlu

pp. 384 - 395   |  DOI: https://doi.org/10.29329/ijiaar.2020.274.11   |  Manu. Number: MANU-2009-19-0002

Published online: September 30, 2020  |   Number of Views: 4  |  Number of Download: 23


Abstract

Wheat production is affected by several biotic and abiotic stresses and fungal pathogens are the most important disease factor. Globally important fungal yellow rust diseases of wheat caused by obligate parasite biotrophic fungus named “Puccinia striiformis f. sp. tritici” is causing loss of quality in a grain and yield at significant level in worldwide. The obligate parasites are highly specialized, and significant variation exists in the pathogen population for virulence to specific resistance genes. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach preferred to use chemical pesticides for controlling yellow rust diseases. For this reason, determination and evaluation of the presence of wheat varieties resistant and susceptible to yellow rust diseases is of great importance for breeding. Genetic diversity and durability are the two most important features of the resistance for the global wheat improvement programs. Genetic analysis to understand the genetic basis of resistance is important to control of wheat yellow rust. In addition to traditional characterization of resistance using physiological methods, wheat populations also have been genetically characterized using DNA-based molecular markers related with genes to identify and select the presence or absence of genes in early generation populations that could contribute to durable resistance. This review will discuss about yellow rust disease resistance in wheat genotypes in the frame of molecular breeding efforts in combination with our previous findings and current technological developments at molecular level. This information will serve as a foundation for plant breeders and geneticists to develop durable yellow rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding.

Keywords: Marker assisted selection, Molecular breeding, Puccinia striiformis, Wheat, Yellow rust


How to Cite this Article?

APA 6th edition
Cabuk, E., Aydin, Y. & Uncuoglu, A.A. (2020). Genetic Analysis of Yellow Rust Resistance in Wheat . International Journal of Innovative Approaches in Agricultural Research, 4(3), 384-395. doi: 10.29329/ijiaar.2020.274.11

Harvard
Cabuk, E., Aydin, Y. and Uncuoglu, A. (2020). Genetic Analysis of Yellow Rust Resistance in Wheat . International Journal of Innovative Approaches in Agricultural Research, 4(3), pp. 384-395.

Chicago 16th edition
Cabuk, Ezgi, Yildiz Aydin and Ahu Altinkut Uncuoglu (2020). "Genetic Analysis of Yellow Rust Resistance in Wheat ". International Journal of Innovative Approaches in Agricultural Research 4 (3):384-395. doi:10.29329/ijiaar.2020.274.11.

References
  1. Akfirat, F., Y. Aydin, F. Ertugrul, S. Hasancebi, H. Budak, K. Akan, Z. Mert, N. Bolat and A. A. Uncuoglu (2010). A microsatellite marker for yellow rust resistance in wheat. Cereal Res. Commun., 38(2), 203-210.  [Google Scholar]
  2. Akfirat, F. S., F. Ertugrul, S. Hasancebi, Y. Aydin, K. Akan, Z. Mert, M. Cakir and A. A. Uncuoglu (2013). Chromosomal location of genomic SSR markers associated with yellow rust resistance in Turkish bread wheat (Triticum aestivum L.). J. Genet., 92(2), 233-240.  [Google Scholar]
  3. Amiri, R., M. Mesbah, M. Moghaddam, M. R. Bihamta, S. A. Mohammadi and P. Norouzi (2009). A new RAPD marker for beet necrotic yellow vein virus resistance gene in Beta vulgaris. Biol. Plant., 53, 112-119.  [Google Scholar]
  4. Appels, R., K. Eversole, C. Feuillet, B. Keller, J. Rogers, N. Stein and et al. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361(6403), eaar7191.  [Google Scholar]
  5. Asad, M. A, X. Xia, C. Wang and Z. He (2012). Molecular mapping of stripe rust resistance gene YrSN104 in Chinese wheat line Shaannong 104. Hereditas, 149, 146-152.  [Google Scholar]
  6. Bahri, B., M. Leconte, C. de Vallavieille-Pope and J. Enjalbert (2009). Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Conserv. Genet., 10, 1425-1428.  [Google Scholar]
  7. Balta, H., Ö. K. Metin, F. Ş. Akfirat, F. Ertuğrul, S. Hasancebi, Y. Aydin, K. Akan, Z. Mert, M. Türet and A. A. Uncuoglu (2014). Identification of an AFLP marker linked with yellow rust resistance in wheat (Triticum aestivum L.). Turk. J. Biol., 38(3), 371-379.  [Google Scholar]
  8. Batley, J. and D. Edwards (2007). SNP applications in plants. N. C. Nnadozie, E. H. A. Rikkerink, S. A. Gardiner, H. N. De Silva (Eds) Association mapping in plants. Springer, 95-102. [Google Scholar]
  9. Chai, Y., D. J. Kriticos, J. M. Beddow, E. Duveiller and R. W. Sutherst (2014). Puccinia striiformis. HarvestChoice, 1-7. [Google Scholar]
  10. Chen, W. Q., L. R. Wu, T. G. Liu, S. C. Xu, S. L. Jin, Y. L. Peng and B. T. Wang (2009). Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis., 93, 1093-1101.  [Google Scholar]
  11. Cheng, P., L. S. Xu, M. N. Wang, D. R. See and X. M. Chen (2014). Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor. Appl. Genet., 127, 2267-2277.  [Google Scholar]
  12. Christian, M., T. Cermak, E. L. Doyle, C. Schmidt, F. Zhang, A. Hummel, A. J. Bogdanove and D. F. Voytas (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186, 757-761.  [Google Scholar]
  13. Collard, B. C. and D. J. Mackill (2008). Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B: Biol. Sci., 363(1491), 557-572.  [Google Scholar]
  14. Edae, E. A., R. L. Bowden and J. Poland (2015). Application of population sequencing (POPSEQ) for ordering and imputing genotyping-by-sequencing markers in hexaploid wheat. G3 (Bethesda), 5(12), 2547-2553.  [Google Scholar]
  15. Elbasyoni, I. S., W. M.  El-Orabey, S. Morsy, P. S. Baenziger, Z. Al Ajlouni and I. Dowikat (2019). Evaluation of a global spring wheat panel for stripe rust: Resistance loci validation and novel resources identification. PloS One, 14(11), e0222755. [Google Scholar]
  16. Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler and S. E. Mitchell (2011). A robust, simple Genotyping-By-Sequencing (GBS) approach for high diversity species. PloS One, 6(5).  [Google Scholar]
  17. Enjalbert, J., X. Duan, T. Giraud, D. Vautrin, C. De Vallavieille‐Pope and M. Solignac (2002). Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Mol. Ecol. Notes., 2(4), 563-565.  [Google Scholar]
  18. Ercan, S., F. Ertugrul, Y. Aydin, F. S. Akfirat, S. Hasancebi, K. Akan, Z. Mert, N. Bolat, O. Yorgancilar and A. A Uncuoglu (2010). An EST-SSR marker linked with yellow rust resistance in wheat. Biol. Plant., 54(4), 691-696.  [Google Scholar]
  19. FAO, 2019. FAOSTAT statistics database, (2020, February 25), http://www.fao. org/faostat.  [Google Scholar]
  20. Feldman, M. and A. A. Levy (2005). Allopolyploidy–a shaping force in the evolution of wheat genomes. Cytogenet. Genome Res., 109(1-3), 250-258.  [Google Scholar]
  21. Feodorova-Fedotova, L. and B. Bankina (2018). Characterization of yellow rust (Puccinia striiformis Westend.). Res. Rural. Dev., 2.  [Google Scholar]
  22. Gassner, G. and W. Straib (1932). Die bestimmung der biologische rasen des weizengelbrostes (Puccinia glumarum f.sp. tritici (Schmt.) Erikss. und Henn). Arbeiten des Forschungsinstitutes fiir Kar-toffelbau an der Biologischen Reiehsanstalt fiir Land- und Forstwirtschaft, 20, 141-163. [Google Scholar]
  23. Goutam, U., S. Kukreja, R. Yadav, N. Salaria, K. Thakur and A. K. Goyal (2015). Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front. Microbiol., 6, 861.  [Google Scholar]
  24. Gupta, P. K., P. Langridge and R. R. Mir (2010). Marker-assisted wheat breeding: present status and future possibilities. Mol. Breed., 26(2), 145-161.  [Google Scholar]
  25. Hasancebi, S., Z. Mert, F. Ertugrul, K. Akan, Y. Aydin, F. S. Akfirat and A. A. Uncuoglu (2014). An EST-SSR marker, bu099658, and its potential use in breeding for yellow rust resistance in wheat. Czech J. Genet. Plant Breed., 50(1), 11-18. [Google Scholar]
  26. He, J., X. Zhao, A. Laroche, Z. X. Lu, H. Liu and Z. Li (2014). Genotyping-By-Sequencing (GBS), an ultimate Marker-Assisted Selection (MAS) tool to accelerate plant breeding. Front. Plant Sci., 5, 484.  [Google Scholar]
  27. Helguera, M., I. A. Khan, J. Kolmer, D. Lijavetzky and L. Zhong-qi (2003). PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci., 43, 1839-1847.  [Google Scholar]
  28. Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna and E. Charpentier (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.  [Google Scholar]
  29. Joshi, R. K. and S. Nayak (2010). Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol. Mol. Biol. Rev., 5(3), 51-60.   [Google Scholar]
  30. Kashyap, P. L., S. Kumar, P. Jasrotia, D. P. Singh and G. P. Singh (2020). Nanotechnology in Wheat Production and Protection. N. Dasgupta, S. Ranja and E. Lichtfouse (Eds) Environmental Nanotechnology, Springer, Cham.Volume, 4, 165-194.  [Google Scholar]
  31. Kim, Y. G., J. Cha and S. Chandrasegaran (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci., 93, 1156-1160.  [Google Scholar]
  32. Kloppers, F. J. and Z. A. Pretorius (1997). Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol., 46, 737-750.  [Google Scholar]
  33. Kumar, S., T. W. Banks and S. Cloutier (2012). SNP discovery through next-generation sequencing and its applications. International journal of plant genomics, 2012.   [Google Scholar]
  34. Liu, J., D. Liu, W. Tao, W. Li, S. Wang, P. Chen, S. Cheng and D. Gao (2000). Molecular marker-faciliated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed., 119, 21-24.  [Google Scholar]
  35. Liu, J., Z. Chang, X. Zhang, Z. Yang, X. Li, J. Jia, H. Zhan, H. Guo and J. Wang (2013). Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet., 126, 265-274.  [Google Scholar]
  36. McIntosh, R. A., Y. Yamazaki, J. Dubcovsky, J. Rogers, C. Morris and R. Appels (1973). A catalogue of gene symbols for wheat. In: Proc. 4th Int. Wheat Genet. Symp. 893-937. [Google Scholar]
  37. Miedaner, T., M. Rapp, K. Flath, C. F. H. Longin and T. Würschum (2019). Genetic architecture of yellow and stem rust resistance in a durum wheat diversity panel. Euphytica, 215(4), 71.  [Google Scholar]
  38. Miller, J. C., M. C. Holmes, J. Wang, D. Y. Guschin, Y. Lee, I. Rupniewski and et al. (2007). An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol, 25, 778-785.  [Google Scholar]
  39. Michelmore, R. W., I. Paran and R. V. Kesseli (1991). Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific regions by using segregating populations. Proc. Natl. Acad. Sci. U.S.A., 88, 9828-9832.  [Google Scholar]
  40. Mu, J., M. Dai, X. Wang, X. Tang, S. Huang, Q. Zeng and et al. (2019). Combining genome-wide linkage mapping with extreme pool genotyping for stripe rust resistance gene identification in bread wheat. Mol. Breed., 39(6), 82.  [Google Scholar]
  41. O'Brien, L., R. Appels and J. P. Gustafson (Eds). (2001). Wheat breeding in the new century: Applying molecular genetic analyses of key quality and agronomic traits. CSIRO Pub. [Google Scholar]
  42.  Pakeerathan, K., H. Bariana, N. Qureshi, D. Wong, M. Hayden and U. Bansal (2019). Identification of a new source of stripe rust resistance Yr82 in wheat. Theor. Appl. Genet., 132(11), 3169-3176.  [Google Scholar]
  43. Peng, J. H., T. Fahima, M. S. Roeder, Q. Y. Huang and A. Dahan (2000). A High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetics, 109, 199-210.  [Google Scholar]
  44. Qureshi, N., P. Kandiah, M. K. Gessese, V. Nsabiyera, V. Wells, P. Babu and et al. (2018a). Development of co-dominant KASP markers co-segregating with Ug99 effective stem rust resistance gene Sr26 in wheat. Mol. Breed., 38(8), 97.  [Google Scholar]
  45. Qureshi, N., H.S. Bariana, P. Zhang, R. McIntosh, U. K. Bansal, D. Wong and et al. (2018b). Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis., 102(2), 413-420.  [Google Scholar]
  46. Ramirez‐Gonzalez, R. H., V. Segovia, N. Bird, P. Fenwick, S. Holdgate, S. Berry and et al. (2015). RNA‐S eq bulked segregant analysis enables the identification of high‐resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol. J., 13(5), 613-624.  [Google Scholar]
  47. Randhawa, H. S., M. Asif, C. Pozniak, J. M. Clarke, R. J. Graf, S. L. Fox and et al. (2013). Application of molecular markers to wheat breeding in Canada. Plant Breed., 132(5), 458-471.  [Google Scholar]
  48. Randhawa, M., U. Bansal, M. Valárik, B. Klocová, J. Doležel and H. Bariana (2014). Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor. Appl. Genet., 127, 317-324.  [Google Scholar]
  49. Rasheed, A., W. Wen, F. Gao, S. Zhai, H. Jin, J. Liu and et al. (2016). Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor. Appl. Genet., 129(10), 1843-1860.  [Google Scholar]
  50. Ray, D. K., N. D. Mueller, P. C. West and J. A. Foley (2013). Yield trends are insufficient to double global crop production by 2050. PloS One, 8(6), e66428.  [Google Scholar]
  51. Robert, O., C. Abelard and F. Dedryve (1999). Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol. Breed., 5, 167-175. [Google Scholar]
  52. Roelfs, A. P. (1989). Epidemiology of the cereal rusts in North America. Canadian Journal of Plant Pathology, 11(1), 86-90.  [Google Scholar]
  53. Sánchez-Martín, J. and B. Keller (2019). Contribution of recent technological advances to future resistance breeding. Theor. Appl. Genet., 132(3), 713-732.  [Google Scholar]
  54. Schlotterer, C. (2004). The evolution of molecular markers-just a matter of fashion?. Nat. Rev. Genet., 5(1), 63-69.  [Google Scholar]
  55. Semagn, K., Y. Beyene, M. L. Warburton, A. Tarekegne, S. Mugo, B. Meisel and et al. (2013). Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC genomics, 14(1), 313.  [Google Scholar]
  56. Singh, R. P., J. C. Nelson and M. E. Sorrels (2000). Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci., 40, 1148-1155.  [Google Scholar]
  57. Trick, M., N. M. Adamski, S. G. Mugford, C. C. Jiang, M. Febrer and C. Uauy (2012). Combining SNP discovery from next-generation sequencing data with Bulked Segregant Analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol., 12(1), 14.  [Google Scholar]
  58. Todorovska, E., N. Christov, S. Slavov, P. Christova and D. Vassilev (2009). Biotic stress resistance in wheat-breeding and genomic selection implications. Biotechnology & Biotechnological Equipment, 23(4), 1417-1426.  [Google Scholar]
  59. Wang, L., J. Ma, R. Zhou, X. Wang and J. Jia (2002). Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, PI 178383 (Triticum aestivum L). Euphytica, 124, 71-73.  [Google Scholar]
  60. Wang, B., X. Hu, Q. Li, B. Hao, B. Zhang, G. Li and Z. Kang (2010). Development of race-specific SCAR markers for detection of Chinese races CYR32 and CYR33 of Puccinia striiformis f. sp. tritici. Plant Dis., 94, 221-228.  [Google Scholar]
  61. Wang, Y., X. Cheng, Q. Shan, Y. Zhang, J. Liu, C. Gao and et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol., 32(9), 947.  [Google Scholar]
  62. Wang, Y., J. Xie, H. Zhang, B. Guo, S. Ning, Y. Chen and et al. (2017). Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor. Appl. Genet., 130(10), 2191-2201.  [Google Scholar]
  63. Wang, Y., H. Zhang, J. Xie, B. Guo, Y. Chen, H. Zhang and et al. (2018a). Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J., 6(1), 91-98. [Google Scholar]
  64. Wang, W., Q. Pan, F. He, A. Akhunova, S. Chao, H. Trick and et al. (2018b). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J., 1(1), 65-74.  [Google Scholar]
  65. Wellings, C. R. (2007). Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979-2006. Aust. J. Agric. Res., 58, 567-575.  [Google Scholar]
  66. Wu, J., Q. Zeng, Q. Wang, S. Liu, S. Yu, J. Mu and et al. (2018). SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor. Appl. Genet., 131(7), 1481-1496.  [Google Scholar]
  67. Yuan, F. P., Q. D. Zeng, J. H. Wu, Q. L. Wang, Z. J. Yang, B. P. Liang and et al. (2018). QTL mapping and validation of adult plant resistance to stripe rust in chinese wheat landrace humai 15. Front Plant Sci., 9, 968. [Google Scholar]
  68. Zhang, Y., Y. Bai, G. Wu, S. Zou, Y. Chen, C. Gao and et al. (2017). Simultaneous modification of three homoeologs of Ta EDR 1 by genome editing enhances powdery mildew resistance in wheat. Plant J., 91(4), 714-724.  [Google Scholar]
  69. Zhou, X. L., D. J. Han, X. M. Chen, H. L. Gou, S. J. Guo, L. Rong and et al. (2014a). Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor. Appl. Genet., 127, 2349-2358.  [Google Scholar]
  70. Zhou, X. L., M. N. Wang, X. M. Chen, Y. Lu, Z. S. Kang and J. X. Jing (2014b). Identification of Yr59 conferring high temperature adult plant resistance to stripe rust in wheat germplasm PI 178759. Theor. Appl. Genet., 127, 935-945. [Google Scholar]