International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(1) 87-95

Effect of Sprouting Temperature on Durum Wheat (Triticum Durum) Sprouts Nutritional Properties and Bioactive Compounds

Sarra Jrıbı, Helga Molnar, Nora Adanyi, Sarra Marzougui, Zoltan Naar & Hajer Debbabi

pp. 87 - 95   |  DOI: https://doi.org/10.29329/ijiaar.2019.188.9

Published online: March 29, 2019  |   Number of Views: 223  |  Number of Download: 869


Abstract

Sprouting is an old food engineering tool to improve edible seeds nutritional value. It can improve carbohydrate digestibility and enhance levels of bioactive compounds. These changes are strongly related to sprouting conditions: temperature, light, duration. The aim of this research was to evaluate the effect of sprouting temperature on sprouts bioactive molecules and proximate composition of Chili Tunisian durum wheat (Triticum durum) seeds. Hence, two temperatures were tested: 18°C and 25°C. Analysis of ashes, proteins, lipids, reducing sugars, carotenoids, vitamin C, vitamin E, and total phenols contents and DPPH radical scavenging activity were done. Our results indicated that temperature influenced significantly proximate composition of sprouts, as well as bioactive compounds. Vitamin C and tocopherols levels were higher at 25°C, than in raw seeds. In contrast, a temperature of 18°C led to highest amounts of carotenoids and total phenols. In addition, antioxidant properties of durum wheat seeds were improved by sprouting only at 18°C. In conclusion, evolution of nutritional properties and bioactive compounds in sprouts were strongly dependent on sprouting temperature used.

Keywords: Durum wheat, Sprouting, Temperature, Nutritional properties, Bioactive compounds


How to Cite this Article

APA 6th edition
Jribi, S., Molnar, H., Adanyi, N., Marzougui, S., Naar, Z. & Debbabi, H. (2019). Effect of Sprouting Temperature on Durum Wheat (Triticum Durum) Sprouts Nutritional Properties and Bioactive Compounds . International Journal of Innovative Approaches in Agricultural Research, 3(1), 87-95. doi: 10.29329/ijiaar.2019.188.9

Harvard
Jribi, S., Molnar, H., Adanyi, N., Marzougui, S., Naar, Z. and Debbabi, H. (2019). Effect of Sprouting Temperature on Durum Wheat (Triticum Durum) Sprouts Nutritional Properties and Bioactive Compounds . International Journal of Innovative Approaches in Agricultural Research, 3(1), pp. 87-95.

Chicago 16th edition
Jribi, Sarra, Helga Molnar, Nora Adanyi, Sarra Marzougui, Zoltan Naar and Hajer Debbabi (2019). "Effect of Sprouting Temperature on Durum Wheat (Triticum Durum) Sprouts Nutritional Properties and Bioactive Compounds ". International Journal of Innovative Approaches in Agricultural Research 3 (1):87-95. doi:10.29329/ijiaar.2019.188.9.

References
  1. AACC International (2012). Approved methods of the American Association of Cereal   Chemists International. Methods: 30-10.01 (Crude fat), 46-30.01 (Protein), 44-15.02 (moisture content), (11th ed.). St Paul, MN: American Association of Cereal Chemists. [Google Scholar]
  2. Almonor, G.O., G.P. Fenner and R. F. Wilson (1998). Temperature effects on tocopherol composition in soybeans with genetically improved oil quality. J. Am. Oil Chem. Soc., 75, 591–596. [Google Scholar]
  3. Ammar, K., M. S. Gharbi and M. Deghaies (2011). Wheat in Tunisia. In Banjean, A. P., Angus W. J., Van Ginkel, M.: The world wheat book: a history of wheat breeding. Lavoisier, Londres-Paris-New York.Vol 2. pp.443-465. [Google Scholar]
  4. Aprodu, L. and L.  Banu (2012). Antioxidant properties of wheat mill streams. J. Cereal Sci., 56,189-195. [Google Scholar]
  5. Ciccoritti, R., F. Taddei, I. Nicoletti, L. Gazza, D. Corradini, M. G. D’Egidio and D. Martini, (2017). Use of bran fractions and debranned kernels for the development of pasta with high nutritional and healthy potential. Food Chem., 225, 77–86. [Google Scholar]
  6. Dziki, D., U. Gawlik-Dziki, R. Rozyło and A. Mis (2015). Drying and grinding characteristics of four-day-germinated and crushed wheat: a novel pproach for producing sprouted flour. Cereal Chem., 92, 312-319. [Google Scholar]
  7. Eskin, N.A.M. and F. Shahidi (2013). Biochemistry of foods. Third edition, Elsevier USA: 530p. [Google Scholar]
  8. Gan, R.-Y., W.-Y. Lui, K. Wu, C.-L. Chan, S.-H. Dai, Z.-Q. Sui and H. Corke (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review, Trends Food Sci. Technol., 59, 1-14. [Google Scholar]
  9. Hopkins W.G. (2003). Physiologie végétale. De Boeck & Larcier, Bruxelles: 577p. [Google Scholar]
  10. Hübner, F. and E. K. Arendt (2013). Germination of cereal grains as a way to improve the nutritional value: a review, Crit. Rev. Food Sci. Nutr., 53, 853-861. [Google Scholar]
  11. Hung, P. V., T. Maeda and N. Morita (2015). Improvement of nutritional composition and antioxidant capacity of high-amylose wheat during germination. J. Food Sci. Technol., DOI 10.1007/s13197-015-1730-6. [Google Scholar]
  12. Jribi, S., K. Sassi, D. Sfayhi and H. Debbabi (2018). Sprouting, an Eco-Friendly Technology for Improving Nutritional Quality of Tunisian Wheat Cultivar “Khiar”. In: Kallel A., Ksibi M., Ben Dhia H., Khélifi N. (eds) Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions. EMCEI 2017. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham. https://doi.org/10.1007/978-3-319-70548-4_410 [Google Scholar] [Crossref] 
  13. Koehler, P., G. Hartmann, H. Wieser and M. Rychlik (2007). Changes of folates, dietary fiber and proteins in wheat as affected by germination. J. Agric. Food Chem., 55, 4678-4683. [Google Scholar]
  14. Mak, Y., R. D. Willows, T.H. Roberts, C. W. Wrigley, P. J. Sharp and L. Copeland (2009). Germination of wheat: a functional proteomics analysis of the embryo. Cereal Chem., 86, 281–289.  [Google Scholar]
  15. McCleary, B. V. and P.  McGeough (2015). A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-Xylanase. Appl. Biochem.   Biotechnol., 177, 1152-1163. [Google Scholar]
  16. Molnàr, H., I. Bata-Vidacs, E. Baka, Z. Cserhalmi, S. Ferenczi, R. Tomoskozi-Farkas, N.  Adanyi and A. Szekacs (2018). The effect of different decontamination methods on the microbial load, bioactive components, aroma and color of spice paprika. Food Control, 83, 131-140. [Google Scholar]
  17. Ozturk, I., O. Sagdic, M. Hayta and H. Yetim (2012). Alteration in α-tocopherol, some minerals, and fatty acid contents of wheat through sprouting. Chem. Nat. Compd., 47, 876-879. [Google Scholar]
  18. Pasqualone, A., B. Laddomada,  I.  Centomani, V. M. Paradiso, D. Minervini, F. Caponi and C. Summo (2017). Bread making aptitude of mixtures of re-milled semolina and selected durum wheat milling by-products. LWT - Food Sci. Technol., 78, 151-159. [Google Scholar]
  19. Paucar-Menacho, L. M., M. A. Berhow, J. M. Gontijo Mandarino, Y. K. Chang and E. Gonzalez de Mejia (2010). Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Res. Int., 43, 1856–1865. [Google Scholar]
  20. Pérez-Balibrea, S., D. A. Moreno and C. Garcia-Viguera (2011). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem., 129, 35–44. [Google Scholar]
  21. Plaza L., B. De Ancos and M. P.  Cano (2003). Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. Eur. Food Res. Technol., 216, 138–144. [Google Scholar]
  22. Richards, A., C. Wijesundera and P. Salisbury (2008). Genotype and Growing Environment effects on the tocopherols and fatty acids of Brassica napus and B. juncea. J.  Am.  Oil Chem. Soc., 85, 159–168. [Google Scholar]
  23. Schonhof, I., H.-P. Klaring, A. Krumbein, W. Clausen and M. Schreiner (2007). Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agr., Ecosyst.  Environ., 119, 103–111. [Google Scholar]
  24. Schreiner, M., S. Huyskens-Keil, A. Krumbein, I. Schonof and M. Linke (2000). Environmental effects on product quality. In: Shewfelt, R.L., Bruckner, B. (Eds.), Fruit and Vegetable Quality: An Integrated View. Technomic, Lancaster, pp. 85–95. [Google Scholar]
  25. Singh, H., N. Singh, L. Kaur and S. K. Saxena (2001). Effect of sprouting conditions on functional and dynamic rheological properties of wheat. J.  Food Eng., 47, 23-29. [Google Scholar]
  26. Singh, K. and A. M. Kayastha (2014). α-Amylase from wheat (Triticum aestivum) seeds: Its purification, biochemical attributes and active site studies. Food Chem., 162, 1–9. [Google Scholar]
  27. Singkhornart, S., S. Edou-ondo and G. H. Ryu (2014). Influence of germination and extrusion with CO2 injection on physicochemical properties of wheat extrudates. Food Chem., 143, 122–131. [Google Scholar]
  28. Yang, F., T. K. Basu and B. Ooraikul (2001). Studies on germination conditions and antioxidant contents of wheat grain. Int. J. Food Sci. Nutr., 52, 319–330. [Google Scholar]