International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(3) 263-276

Characterization and Environmental Impact of Olive Mill Wastewater Generated from the Three-Phase Extraction Process

Katerina Pikuli & Ariola Devolli

pp. 263 - 276   |  DOI: https://doi.org/10.29329/ijiaar.2024.1075.7

Published online: September 30, 2024  |   Number of Views: 2  |  Number of Download: 6


Abstract

Olive mill wastewater (OMWW) is the main pollutant from the three-phase extraction system of olive oil production. The disposal of OMWW into surface waters represents an important environmental problem in Albania due to huge quantities in short periods (November-February) and high concentrations of organic compounds mainly phenols which cause ecological issues for the ecosystem, such as soil contamination and water pollution.

This study focused on characterization of vegetation water effluents generated from three–phase extraction processes of olive oil production to evaluate their environmental impact.

Samples of OMWW were collected from different three-phase olive mills operating in southern and central parts of Albania. Physicochemical characterization and multivariate analysis were performed. The results of the physicochemical analysis showed that samples of OMWW had an acid pH (4.4-5.3), high levels of organic load expressed in terms of BOD5 (29.8-48.3 g/l), and COD (126-216.8 g/l), higher levels of total nitrogen (423-635mg/L), oils and grease (5.5-8.5 g/L) compared to allowed effluent discharge limits according to Albanian standards. The biodegradability index of OMWW analyzed exceeds the thresh¬old of 3, confirming that our samples are partially or no biodegradable and the polyphe¬nol concentration was 5.5-8.42 g/l.

Keywords: Olive Mill Wastewater, Total Phenolic Content, Environmental Impact, Characterization


How to Cite this Article

APA 6th edition
Pikuli, K. & Devolli, A. (2024). Characterization and Environmental Impact of Olive Mill Wastewater Generated from the Three-Phase Extraction Process . International Journal of Innovative Approaches in Agricultural Research, 8(3), 263-276. doi: 10.29329/ijiaar.2024.1075.7

Harvard
Pikuli, K. and Devolli, A. (2024). Characterization and Environmental Impact of Olive Mill Wastewater Generated from the Three-Phase Extraction Process . International Journal of Innovative Approaches in Agricultural Research, 8(3), pp. 263-276.

Chicago 16th edition
Pikuli, Katerina and Ariola Devolli (2024). "Characterization and Environmental Impact of Olive Mill Wastewater Generated from the Three-Phase Extraction Process ". International Journal of Innovative Approaches in Agricultural Research 8 (3):263-276. doi:10.29329/ijiaar.2024.1075.7.

References
  1. Abu Khayer. M., Cowdhury. M.B., Akratos. C.S., Vayenas. D.V., Pavlou. S. 2013. Olive mill waste composting: A re­view. International Biodeterioration & Biodegradation, 85, pp. 108-119. [Google Scholar]
  2. Alburquerque, J. A., Gonzalvez, J., Garcia, D., Cegarra, J. 2004. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresource Technology, 91, (2), pp. 195-200. [Google Scholar]
  3. Amaral C, Lucas MS, Coutinho J, Crespí AL, do Rosário MA, Pais C, 2008. Microbiological and physicochemical characterization of olive mill wastewaters from a continuous olive mill in Northeastern Portugal. Bioresour Technol 99:7215–7223. https://doi.org/10.1016/j.biortech.2007.12.058 [Google Scholar] [Crossref] 
  4. APHA. 2017. Standard Methods for the Examination of Water and Waste Water, 23th ed. (Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. eds.). America Public Health Association, Washington, DC. [Google Scholar]
  5. Aranda, E., Garcia Romera, I., Ocampo, J. A., Crbone, V., Mari, A., Malorni, A., Sannino, F., De Martino, A., Capasso, R. 2007. Chemical characterization and effects on Lepidiumsativum of the native and bioremediatedcomponents of dry olive mill residue. Chemosphere, 69(2), 229-239. PMid:17544478. http://dx.doi.org/10.1016/j.chemosphere.2007.04.026 [Google Scholar]
  6. Bargougui, L., Guergueb, Z., Chaieb, M., Braham, M., Mekki, A. 2019. Agro-physiological and biochemical responses of Sorghum bicolor in soil amended by olive mill wastewater. Agric Water Manag. 212:60–67 [Google Scholar]
  7. Benamar, A., Mahjoubi, F. Z., Barka, N., Kzaiber, F., Boutoial, K., Ali, G.A., Oussama, A. 2020. Olive mill wastewater treatment using infiltration percolation in column followed by aerobic biological treatment. SN Applied Sciences. 2:655  https://doi.org/10.1007/s42452-020-2481-1 [Google Scholar] [Crossref] 
  8. Benincasa, C., Pellegrino, M., Romano, E., Claps, S., Fallara, C., Perri, E. 2022. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Front. Nutr. 8:782693. doi: 10.3389/fnut.2021.782693 [Google Scholar] [Crossref] 
  9. Bremner, J.M., Mulvaney, C.S. 2015. Nitrogen-total Methods Soil Anal., pp. 595-624, 10.2134/agronmonogr9.2.2ed.c31 [Google Scholar]
  10. Capasso, R., Cristinzio, G., Evidente, A., Scognamiglio, F., 1992. Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters. Phytochemistry, 31: 4125–4128. [Google Scholar]
  11. Cassano, A., Conidi, C., Giorno, L., Drioli, E. 2013. Fractionation of olive mill wastewaters by membrane separation techniques. J Hazard Mater. 248–9:185–93. doi: 10.1016/j.jhazmat.2013.01.006 [Google Scholar] [Crossref] 
  12. De Marco, E., Savarese, M., Paduano, A., & Sacchi, R. 2007. Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters. Food Chemistry, 104(2), 858-867. http://dx.doi.org/10.1016/j.foodchem.2006.10.005 [Google Scholar]
  13. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P. 2013. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochem. 48: 1532-1552. [Google Scholar]
  14. Elayeb, R., Majdoub, H., Achour, S., Trigui, M. 2021. Valorization of Olive Mill Wastewater polyphenols by Separation Hydrocyclone Process. International Journal of Scientific and Engineering Research, Volume 12, Issue 3, ISSN 2229-5518 [Google Scholar]
  15. Gharaibeh, M., Albalasmeh, A., Abu Abbas, H. 2022. Characterization of olive mill wastewater in three climatic zones in the North of Jordan. International Journal of Recycling of Organic Waste in Agriculture, 11 (2): 213-228, https://doi.org/10.30486/ijrowa.2021.1910881.1143 [Google Scholar] [Crossref] 
  16. Haddad, K., Jeguirim, M., Jerbi, B., Chouchene, A., Dutournié, P., Thevenin, N., Ruidavets, L., Jellali, S., Limousy, L. 2017. Olive mill wastewater: From a pollutant to green fuels, agricultural water source and biofertilizer. ACS Sustainable Chemistry and Engineering, 5, 8988–8996. [Google Scholar]
  17. IOC, Global Olive Oil Production. 2022: https://www.oliveoiltimes.com/world/olive-council-forecasts-significant-production-decline/115544. [Google Scholar]
  18. Kalogerakis, N., Politi, M., Foteinis, S., Chatzisymeon, E., Mantzavinos, D. 2013. Recovery of antioxidants from olive mill wastewaters: A viable solution that promotes their overall sustainable management, Journal of Environmental Management, vol. 128, pp. 749-758. https://doi.org/10.1016/j.jenvman.2013.06.027. [Google Scholar] [Crossref] 
  19. Khdair, A., Abu-Rumman, G., Khdair, S.I. 2019. Pollution estimation from olive mills wastewater in Jordan. Heliyon. 5. 1-6. Doi: https://doi.org/10.1016/j.heliyon.2019.e02386 [Google Scholar] [Crossref] 
  20. Khwaldia, K., Attour, N., Matthes, J., Beck, L., Schmid, M. 2022. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf. 1–36. [Google Scholar]
  21. Leouifoudi, I., Zyad, A., Amechrouq, A., Oukerrou, M.A., Mouse, H.A., Mbarki, M. 2014. Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater. Food Sci Technol, 34:249–257. https://doi.org/10.1590/fst.2014.0051 [Google Scholar] [Crossref] 
  22. M.A.F.C.P. 2009. Study on the Olive culture. Situation and its development perspectives. Ministry of Agriculture and Food and Consumer Protection of Albania, Tirana, Albania [Google Scholar]
  23. Maazoun, A., Aounallah, M., Hammami, S., Damergi, S. 2022. The Potential use of Phenolic Compounds Recovered from Olive Mill Wastewater in Food Model Systems. EJNFS, 14(3): 39-63, Article no.EJNFS.86887. [Google Scholar]
  24. Neifar, M., Jaouani, A., Ayari, A., Abid, O., Ben, H.S., Boudabous, A., Najar, T., Ghorbel, R.E. 2013. Improving the nutritive value of olive cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere. 91:110–4. doi: 10.1016/j.chemosphere.2012.12.015 [Google Scholar] [Crossref] 
  25. Niaounakis, M., Halvadakis, C.P. 2006. Olive Processing Waste Management. In: Waste Management Series, second ed., vol. 5. Elsevier. [Google Scholar]
  26. Obied, H.K., Allen, M.S., Bedgood, D.R., Prenzler, P.D., Robards, K., Stockmann, R. 2005. Bioactivity and analysis of biophenols recovered from olive mill waste. J Agric Food Chem. 53:823–37. doi: 10.1021/jf048569x [Google Scholar] [Crossref] 
  27. Obied, H.K., Prenzler, P.D., Robards, K. 2008. Potent antioxidant biophenols from olive mill waste. Food Chemistry, 111, 171–178. [Google Scholar]
  28. Pikuli, K and Devolli, A. 2024. Total phenolic content and antioxidant activity evaluation of olive mill pomace extract. Scientific Bulletin. Series F. Biotechnologies, Vol. XXVIII, No. 1, 2024 ISSN 2285-1364, CD-ROM ISSN 2285-5521, ISSN Online 2285-1372, ISSN-L 2285-1364 [Google Scholar]
  29. Rodier, J., Bazin, C., Broutin, J.P., Chambon, P., Champsaur, H., Rodier, L. L’Analyse de l’eau, (8 edition) Dunod: Paris (1996), 1384p. [Google Scholar]
  30. Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., Galanakis, C.M. 2017. Olive oil production sector: Environmental effects and sustainability challenges Olive Mill Waste: Recent Adv. Sustain. Manage, pp. 1-28 [Google Scholar]
  31. Spinelli, S., Lecce, L., Likyova, D., Del Nobile, M. A., Conte, A. 2018. Bioactive compounds from orange epicarp to enrich fish burgers. Journal of Science Food Agricultural, 98: 2582-2586. [Google Scholar]
  32. Tabet, D., Saidi, M., Houar,i M., Pichat, P., Khalaf, H. 2006. Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation. J Environ Manage 80:342–346 [Google Scholar]
  33. Tekaya. M., Mechri, B., Bchir, A., Attia, F., Cheheb, H., Daassa, M., Hammami, M. 2013. Effect of nutrient-based fertilisers of olive trees on olive oil quality. J Sci Food Agric 93:2045–2052. https://doi.org/10.1002/jsfa.6015 [Google Scholar] [Crossref] 
  34. Topi, D., Beqiraj, I., Seiti, B., Halimi, E., 2014. Environmental impact from olive mills waste disposal, chemical analysis of solid wastes and wastewaters. Journal of Hygienic Engineering and Design, Vol. 7, pp. 44-48. [Google Scholar]
  35. Torres, M.M., Maestri, D.M. 2006. The effects of genotype and extraction methods on chemical composition of virgin olive oils from Traslasierra Valley (Cordoba, Argentina). Food Chemistry, 96 (4), 507–511. [Google Scholar]
  36. VKM, Vendim i KM Nr. 177, datë 31.3.2005. Për normat e lejuara të shkarkimeve të lëngëta dhe kriteret e zonimit të mjediseve ujore pritëse. [Google Scholar]
  37. Vlyssides, A.G., Loizidou, M., Gimouhopoulos, K., Zorpas, A. 1998. Olive oil processing wastes production and their characteristics in relation to olive oil extraction methods, Fresen. Environ. Bull., 7, 308-313. [Google Scholar]
  38. Yangui, A., Abderraba, M. 2018. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chem. 262: 102-109. [Google Scholar]