International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(4) 514-534

Determination of the Bacterial Community in Soils Associated with Rare Wild Leguminous Species Cicer Montbretii Jaub. & Spach and Lupinus albus L. in Strandzha Natural Park

Mariana Petkova, Maryia Sabeva & Nurettin Tahsin

pp. 514 - 534   |  DOI: https://doi.org/10.29329/ijiaar.2023.630.12

Published online: December 31, 2023  |   Number of Views: 78  |  Number of Download: 190


Abstract

The soil formation in Strandzha Mountain is influenced by the particular combination of the climate's unique forest tree vegetation, the extraordinary variety of root and soil-forming rocks, the hilly low-mountainous relief with significant fragmentation, a densely located hydrographic network with short slopes and dominant exposures. The diversity of soil microorganisms is crucial for plant growth and development and it makes it possible to understand in detail the plant-microbial interactions. The objectives of this study were to determine soil bacteria associated with rare wild leguminous species Cicer montbretii Jaub. & Spach (Constantinople chickpeas) and Lupinus albus L. (white lupinus) in Strandzha National Park. A new locality of Cicer montbretii Jaub was marked nearby village of Brodilovo. L. albus was found in saline-alkaline soil (A1) and yellow earth podzolic soils (A2) around the village of Brodilovo and the Great Pazvlak area. C. montbretii was found to grow on cinnamon forest soils (B1) and siliceous red soil (B2). A study was conducted by physio-chemical analyses and by assessing 16S rDNA metagenomics technique used to generate a total of 126,837 reads from the samples.  The most significant number of observed species 2249 was found in soils saline-alkaline soil (B1) soil. According to that result, the higher diversity indices were calculated in the also in B1 soil. The α-diversity analysis reported yielded similar Shannon indices ranging from 8,322 in B2 to 9,337 in B1. The analyses revealed that B2 yellow earth podzolic soil, unique for Strandzha, has the largest composition with Proteobacteria 44% and the lowest in Actinobacteria 20%. Opposite, in A1 saline-alkaline soil have the richest composition of Actinobacteria 52% and the poorest in Proteobacteria 23%. C. montbretii was found in neutral A2 and B2 soils, while L. ablus prefer acidic A1 and B1 soils. The determination of the microbiological status of the soils associated with Constantinople chickpeas and white lupinus and the annual monitoring of the species in Strandzha Park will determine the methods for the most effective maintenance and storage outside their habitats.

Keywords: NGS, Cicer montbretii Jaub. & Spach, Lupinus ablbus L., expedition, Strandzha Nature Park


How to Cite this Article

APA 6th edition
Petkova, M., Sabeva, M. & Tahsin, N. (2023). Determination of the Bacterial Community in Soils Associated with Rare Wild Leguminous Species Cicer Montbretii Jaub. & Spach and Lupinus albus L. in Strandzha Natural Park . International Journal of Innovative Approaches in Agricultural Research, 7(4), 514-534. doi: 10.29329/ijiaar.2023.630.12

Harvard
Petkova, M., Sabeva, M. and Tahsin, N. (2023). Determination of the Bacterial Community in Soils Associated with Rare Wild Leguminous Species Cicer Montbretii Jaub. & Spach and Lupinus albus L. in Strandzha Natural Park . International Journal of Innovative Approaches in Agricultural Research, 7(4), pp. 514-534.

Chicago 16th edition
Petkova, Mariana, Maryia Sabeva and Nurettin Tahsin (2023). "Determination of the Bacterial Community in Soils Associated with Rare Wild Leguminous Species Cicer Montbretii Jaub. & Spach and Lupinus albus L. in Strandzha Natural Park ". International Journal of Innovative Approaches in Agricultural Research 7 (4):514-534. doi:10.29329/ijiaar.2023.630.12.

References
  1. Amin, M., & Flowers, T. H. (2004). Evaluation of Kjeldahl digestion method. J. Res. Science, 15, 159-179. [Google Scholar]
  2. Barns, S. M., Takala, S. L., & Kuske, C. R. (1999). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Applied and environmental microbiology, 65(4), 1731-1737. [Google Scholar]
  3. Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57. [Google Scholar]
  4. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature methods, 7(5), 335-336. [Google Scholar]
  5. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335. [Google Scholar]
  6. Chopkova, V., Petkova, M., & Shilev, S. (2023). Uncovering Bacterial Diversity during Mesophilic and Thermophilic Phases of Biowaste Composting through Next-Generation Sequencing. Applied Sciences, 13(5), 3111. [Google Scholar]
  7. de Carvalho, T. S., Jesus, E. D. C., Barlow, J., Gardner, T. A., Soares, I. C., Tiedje, J. M., & Moreira, F. M. D. S. (2016). Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology, 97(10), 2760-2771. [Google Scholar]
  8. Derry, A.M., Staddon, W.J., Kevan, P.G. and Trevors, J.T. (1999). Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon source-utilization. Biodiversity and Conservation 8: 205–221. [Google Scholar]
  9. Dixon, R., and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nat. Rev. Microbiol. 2, 621–631. doi: 10.1038/nrmicro954 [Google Scholar] [Crossref] 
  10. Dokić, L., Savić, M., Narančić, T. and Vasiljević, B. (2010). Metagenomic Analysis of Soil Microbial Communities. Archives of Biological Science-Belgrade 62(3): 559-564. [Google Scholar]
  11. Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar]
  12.  Edgar, R.C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods, 10, 996. [Google Scholar]
  13. Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar]
  14. Gui, H., Purahong, W., Hyde, K. D., Xu, J., & Mortimer, P. E. (2017). The arbuscular mycorrhizal fungus Funneliformis mosseae alters bacterial communities in subtropical forest soils during litter decomposition. Frontiers in Microbiology, 8, 1120. [Google Scholar]
  15. Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar]
  16. Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L., & Sessitsch, A. (2004). Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Applied and Environmental Microbiology, 70(9), 5057-5065. [Google Scholar]
  17. Jeewani, P. H., Ling, L., Fu, Y., Van Zwieten, L., Zhu, Z., Ge, T., ... & Xu, J. (2021). The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes. Geoderma, 383, 114769. [Google Scholar]
  18. Karron, J. D., Falk, D. A., & Holsinger, K. E. (1991). Breeding systems in rare plant species. Genetics and conservation of rare plants. Oxford, UK: Oxford University Press On Demand, 87-98. [Google Scholar]
  19. Kent, A. D., & Triplett, E. W. (2002). Microbial communities and their interactions in soil and rhizosphere ecosystems. Annual Reviews in Microbiology, 56(1), 211-236. [Google Scholar]
  20. Krstić Tomić, T., Atanasković, I., Nikolić, I., Joković, N., Stević, T., Stanković, S., ... & Lozo, J. (2023). Culture-Dependent and Metabarcoding Characterization of the Sugar Beet (Beta vulgaris L.) Microbiome for High-Yield Isolation of Bacteria with Plant Growth-Promoting Traits. Microorganisms, 11(6), 1538. [Google Scholar]
  21. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet. J. 2011, 17, 10–12. [Google Scholar]
  22. Navas-Molina, J. A., Peralta-Sánchez, J. M., González, A., McMurdie, P. J., Vázquez-Baeza, Y., Xu, Z.,Knight, R. (2013). Advancing our understanding of the human microbiome using QIIME. In Methods in enzymology (Vol. 531, pp. 371-444). Academic Press. [Google Scholar]
  23. Pearce, D. A., Newsham, K. K., Thorne, M. A., Calvo-Bado, L., Krsek, M., Laskaris, P., et al. (2012). Metagenomic analysis of a southern maritime Antarctic soil. Front. Microbiol. 3:403. doi: 10.3389/fmicb.2012.00403 [Google Scholar] [Crossref] 
  24. Petkova, M., Sabeva, M., Petrova, S., & Tahsin, N. (2023). The bacterial community structure of rhizosphere soil associated with Cicer montbretii Jaub. & Spach endemic to Strandzha Mountain. Ecologia Balkanica, 15(1). [Google Scholar]
  25.  Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar]
  26. Steila, D., & Pond, T. E. (1989). The geography of soils: formation, distribution, and management. Rowman & Littlefield. [Google Scholar]
  27. Whittaker, R. H. (1969). New Concepts of Kingdoms of Organisms: Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science, 163(3863), 150-160. [Google Scholar]
  28. Willis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Frontiers in microbiology, 10, 2407. [Google Scholar]
  29. Wongdee, J., Piromyou, P., Songwattana, P., Greetatorn, T., Teaumroong, N., Boonkerd, N., Tittabutr, P. (2023). Role of two RpoN in Bradyrhizobium sp. strain DOA9 in symbiosis and free-living growth. Frontiers in Microbiology, 14, 1131860. [Google Scholar]
  30. Zhang, J.; Chen, M.; Huang, J.; Guo, X.; Zhang, Y.; Liu, D.; Wu, R.; He, H.; Wang, J. Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea. PLoS ONE 2019, 14, e0215328. [Google Scholar]
  31. Zhang, M., Lin, M., Cao, X., Zhao, S., Jiang, D., Wang, B., & Lin, H. (2018). Difference in pH value and nutrient and bacterial diversity in the Carya cathayensis forest soil under different management models. Biodiversity Science, 26(6), 611-619. [Google Scholar]
  32. Zheng, Y., Ji, N. N., Wu, B. W., Wang, J. T., Hu, H. W., Guo, L. D., & He, J. Z. (2020). Climatic factors have unexpectedly strong impacts on soil bacterial β-diversity in 12 forest ecosystems. Soil Biology and Biochemistry, 142, 107699. [Google Scholar]