- Aketo, T., Hoshikawa, Y., Nojima, D., Yabu, Y., Maeda, Y., Yoshino, T., Takano, H., Tanaka, T. (2020). Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. Journal of Bioscience and Bioengineering 129, 565-572 [Google Scholar]
- Al-Ajalin, F.A.H., Idris, M., Abdullah, S.R.S., Kurniawan, S.B., Imron, M.F. (2020). Effect of wastewater depth to the performance of short-term batching-experiments horizontal flow constructed wetland system in treating domestic wastewater. Environmental Technology & Innovation 20, 101106 [Google Scholar]
- Ali, N., Bilal, M., Khan, A., Ali, F., Yang, Y., Malik, S., Iqbal, H.M., Din, U.S., Iqbal, H.M.N. (2021). Deployment of metal-organic frameworks as robust materials for sustainable catalysis and remediation of pollutants in environmental settings. Chemosphere 272, 129605 [Google Scholar]
- Bardi, A., Yuan, Q., Tigini, V., Spina, F., Varese, G.C., Spennati, F., Simone Becarelli, S., Gregorio, S.D., Petroni, G., Munz, G. (2017). Recalcitrant compounds removal in raw leachate and synthetic effluents using the white-rot Fungus Bjerkandera adusta. Water, 9(824), 1-14 [Google Scholar]
- Beuckels, A., Smolders, E., Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98-106. [Google Scholar]
- Bhatia, D., Sharma, N.R., Singh, J., Kanwar, R.S. (2017). Biological methods for textile dye removal from wastewater. Critical Reviews in Environmental Science and Technology. A review, 47(19), 1836-1876. [Google Scholar]
- Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., GalvãoA., Pisoeiro, J., Rizzo, A., Masi,F. (2020). A review of nature-based solutions for greywater treatment: applications, hydraulic design, and environmental benefits. Science of The Total Environment, 711, 134731. [Google Scholar]
- Cameron, M. D., Timofeevski, S., Aust, S.D. (2000). With respect to the degradation of recalcitrant compounds and xenobiotics Enzimology of P. chrysosporium with respect to the degredation of recalcitirant compounds and xenobiotics. Appl Microbiol Biotechnol, 54, 751 – 758. [Google Scholar]
- Cao, M., Hu, A., Gad, M., Adyari, B., Qin, D., Zhang, L., Sun, Q., Yu, C.P. (2022). Domestic wastewater causes nitrate pollution in an agricultural watershed, China. Science of The Total Environment, 823, Article 153680 [Google Scholar]
- Dinh, N.T., Nguyen, T.H., Mungray, A.K., Duong, L.D., Phuong, N.T., Nguyen, D.D., Chung, W.J., Chang, S.W., Tuan, P.D. (2021). Biological treatment of saline domestic wastewater by using a down-flow hanging sponge reactor. Chemosphere, 283, 131101 [Google Scholar]
- Fernandes, T.V., Suárez-Muñoz, M., Trebuch, L.M., Verbraak, P.J., Van de Waal, D.B. (2017). Toward an ecologically optimized N: P Recovery from wastewater by microalgae. Frontiers in Microbiology, 8, Article, 1742 [Google Scholar]
- Giovanella, P., Vieira, G.A.L., Ramos Otero, I.V., Pais Pellizzer, E., de Jesus Fontes, B., Sette, L.D. (2020). Metal and organic pollutants bioremediation by extremophile microorganisms. Journal of Hazardous Materials, 15(382), Article, 121024. [Google Scholar]
- Huo, S., Liu, J., Zhu, F., Basheer, S., Necas, D., Zhang, R., Li, K., Chen, D., Cheng, P., Cobb, K., Chen, P., Brandel, B., Ruan, R. (2020). Post treatment of swine anaerobic effluent by weak electric field following intermittent vacuum assisted adjustment of N: P ratio for oil-rich filamentous microalgae production. Bioresource Technology, 314, Article, 123718. [Google Scholar]
- Jeannotte, R. (2014). Metabolic pathways: nitrogen metabolism. Encycl. Food Microbiol., Elsevier pp. 544-560. [Google Scholar]
- Krismastuti, F.S.H., Hamim, N. (2019). Designing a formulation of synthetic wastewater as proficiency testing sample: a feasibility study on a laboratory scale. Accred Qual Assur, 24, 437–441. [Google Scholar]
- Larsen, T.A., Maurer, M. (2011). Source separation and decentralization. Wilderer Peter (Ed.), Treatise on Water Science, Vol. 4, Academic Press, Oxford, pp. 203-229. [Google Scholar]
- Mohammad, P., Azarmidokht, H., Fatollah, M., Mahboubeh, B. (2006). Application of response surface methodology for optimization of important parameters in decolorizing treated distillery wastewater using Aspergillus fumigatus UB2.60. International Biodeterioration & Biodegradation, 57, 195-199. [Google Scholar]
- Raju, A.R., Anitha, C.T., Sidhimol, P.D., Rosna, K.J. (2010). Phytoremediation of Domestic Wastewater by Using a Free Floating Aquatic Angiosperm, Lemna minor. Nature Environment and Pollution Technology 9 (1), 83-88. [Google Scholar]
- Samwel, M. (2005). Alternatives for Sanitary Systems Ecological Sanitation - A chance for Rural Romanian Areas, WECF Women in Europe for a Common Future [Google Scholar]
- Shen, L., Ndayambaje, J.D., Murwanashyaka, T., Cui, W., Manirafasha, E., Chen, C., Wang, Y., Lu, Y. (2017). Assessment upon heterotrophic microalgae screened from wastewater microbiota for concurrent pollutants removal and biofuel production. Bioresource Technology, 245, 386-393. [Google Scholar]
- Singh, D.V., Bhat, R.A., Upadhyay, A.K., Singh, R., Singh, D.P. (2020). Microalgae in aquatic environs: A sustainable approach for remediation of heavy metals and emerging contaminants. Environ. Technol. Innov. Article, 101340. [Google Scholar]
- Suthar, S., Verma, R. (2018). Production of Chlorella vulgaris under varying nutrient and abiotic conditions: a potential microalga for bioenergy feedstock. Process Safety and Environmental Protection, 113, 141-148. [Google Scholar]
- Upadhyay, A.K., Singh, R., Singh, D.V., Singh, L., Singh, D.P. (2021). Microalgal consortia technology: A novel and sustainable approach of resource reutilization, waste management and lipid production. Environ. Technol. Innov. Article, 101600. [Google Scholar]
- Van Lier, J. B. (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques, Water Sci. Technol. 57, 1137–1148. [Google Scholar]
- Visco, G., Gampanella, L., Nobili, V. (2005). Organic Carbons and TOC in Waters: An Overview of the International Norm for Its Meqsurements. Microchemical Journal, 79(1-2), 185 – 191 [Google Scholar]
- Widyarani, Wulan, D.R., Hamidah, U., Komarulzaman, A., Rosmalina, R.T., Sintawardani, N. (2022). Domestic wastewater in Indonesia: generation, characteristics and treatment. Environmental Science and Pollution Research, 29(22), 1-18. [Google Scholar]
- Xia, A., Murphy, J.D. (2016). Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems. Trends in Biotechnology, 34, 264-27. [Google Scholar]
- Zhang, M., Leung, K.T., Lin, H., Liao, B. (2020). The biological performance of a novel microalgal-bacterial membrane photobioreactor: Effects of HRT and N/P ratio Chemosphere, 261, Article, 128199. [Google Scholar]
- Zulkifli, M., Hasan, H.A., Abdullah, S.R.S., Othman, A.R (2023). Adaptation of effective consortium bacteria for ammonia removal from domestic wastewater using moving bed biofilm reactor. Materials Today. Accepted In Press [Google Scholar]
|