International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(4) 558-568

Potentials of Berry Fruits Pomaces for Bio-Based Films

Çağla Ural & Buket Aşkın

pp. 558 - 568   |  DOI: https://doi.org/10.29329/ijiaar.2023.630.15

Published online: December 31, 2023  |   Number of Views: 18  |  Number of Download: 77


Abstract

Nowadays, there are new approaches and goals for packaging materials for advantages on foods and friendly properties on environment. For these purposes, biodegradable polymers are much preferred to replace conventional polymeric goods in packaging applications. Biopolymers, such as carboxyl methyl cellulose (CMS), environmentally friendly sustainable plastic alternatives. The worldwide need for bioplastic as an alternative for conventional plastics because of their nontoxicity, biocompatibility, renewability, and biodegradability properties. They are commonly produced using different raw materials (proteins and polysaccharides), which are mostly derived from plants (cellulose-based plastics and starch derived plastics), and microbial sources.

Moreover, there is more than a need to preserve natural resources and to reduce plastic waste materials by replacing them by bio-alternatives. It should be solution that wasted foods, which are the GRAS, should be a source for enriching biopolymers with their valuable bioactive compounds.  Fruits and vegetables, especially berries that contain high content of valuable bioactive compounds, can be used for enriching to biopolymers and for production of active films and indicators. It has high importance for food science because oxidation and microbial contamination present major problems that influence quality and safety of different products during their storage. Currently, to overcome these points, there are some approaches can be applied. For instance, bioactive compounds and antioxidant agents from berries can be directly added to biopolymers.  Blueberries, red and purple grape, black mulberries etc. and their industrial wasted present good sources of antioxidants, non-flavonoids and flavonoids.  Phenols are primarily found in the skin and pomace of berries. It is known that most of these phenols are typically wasted due to poor extraction during fermentation. Therefore, these wastes are of great importance for biofilms. However, it is also essential to investigate their effects on other properties, such as texture, taste, solubility, etc.

Keywords: Antioxidants, Berry Fruits Pomaces, Carboxyl Methyl Cellulose (CMS), Enriched Biopolymers, Packaging Materials, Sustainable Plastic Alternatives


How to Cite this Article

APA 6th edition
Ural, C. & Askin, B. (2023). Potentials of Berry Fruits Pomaces for Bio-Based Films . International Journal of Innovative Approaches in Agricultural Research, 7(4), 558-568. doi: 10.29329/ijiaar.2023.630.15

Harvard
Ural, C. and Askin, B. (2023). Potentials of Berry Fruits Pomaces for Bio-Based Films . International Journal of Innovative Approaches in Agricultural Research, 7(4), pp. 558-568.

Chicago 16th edition
Ural, Cagla and Buket Askin (2023). "Potentials of Berry Fruits Pomaces for Bio-Based Films ". International Journal of Innovative Approaches in Agricultural Research 7 (4):558-568. doi:10.29329/ijiaar.2023.630.15.

References
  1. [1]      J. Gerritse, J., H.A. Leslie, A. Caroline, L.I. Devriese, A.D. Vethaak, 2020. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. 10, 1-16. [Google Scholar]
  2. [2]      A. Mateos-Cárdenas, J. O’Halloran, F.N. van Pelt, M.A. Jansen, 2020. Rapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj). Sci. Rep. 10, 1–12. [Google Scholar]
  3. [3]      J. Yaradoddi, N. Banapurmath, S. Ganachari, 2020. Biodegradable carboxymethyl cellulose based material for sustainable packaging application. Scientific Reports, 10 (1). [Google Scholar]
  4. [4]      Y.S. Mostafa, A. Sulaiman, A. Alrumman, S.A. Alamri, A. Kholod, O. Mohamed, S. Mostafa, A.M. Alfaify, 2020. Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Scientific Reports, 10, 8815. [Google Scholar]
  5. [5]      J. S. Yaradoddi, S. Hugar, N.R. Banapurmath, A.M. Hunashyal, M.B. Sulochana, A.S. Shettar, S.V. Ganachari, 2019. Alternative and Renewable Bio-based and Biodegradable Plastics. Handbook of Ecomaterials, pp 2935–2954. [Google Scholar]
  6. [6]      S.A. Attaran, A. Hassan, M.U. Wahit, 2017. Materialsforfoodpackagingapplicationsbasedonbio-basedpolymernanocomposites: a review. J. Thermoplast. Compos. Mater. 30, 143–173. [Google Scholar]
  7. [7]      O. Moreno, L. Atares, A. Chiralt, M.C. Cruz, J.S. Kerry, 2018. Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. LWT , 97, 483–490. [Google Scholar]
  8. [8]      J. Yaradoddi, V. Patil, S.V. Ganachari, N. Banapurmath, 2016. Biodegradable plastic production from fruit waste material and its sustainable use for green applications. Int. J. Pharm. Res. Allied Sci. 5, 56–65. [Google Scholar]
  9. [9]      A. Sangroniz, J.R. Sarasua, M. Irıarte, A. Etxeberria, 2019. Survey on transport properties of vapour sand liquid son biodegradable biopolymers. Eur. Polym. J. 120, 109232. [Google Scholar]
  10. [10]    G. Bella, R. Jeevitha, S. Booshan,  2016. Polyvinyl alcohol/Starch/Carboxymethyl cellulose ternary polymer blends: Synthesis, Characterization and Thermal properties. Int. J. Curr. Res. Chem. Pharm. Sci. 3, 43–50. [Google Scholar]
  11. [11]    M. Kurek, L. Hlupić, I.E. Garofulic, E. Descours, 2019. Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packaging and Shelf Life, 20, 1000315. [Google Scholar]
  12. [12]    J. Gómez-Estaca, C. López-de-Dicastillo, P. Hernández-Muñoz, R. Catalá, R. Gavara, R., 2014. Advances in antioxidant active food packaging. Trends in Food Science and Technology, 35(1), 42–45. [Google Scholar]
  13. [13]    J. Lee, R.E. Wrolstad, 2004, Extraction of Anthocyanins and Polyphenolics from Blueberry Processing Waste, Journal of Food Science, 69, 564–573. [Google Scholar]
  14. [14]    C. Drosou, K. Kyriakopoulou, A. Bimpilas, D. Tsimogiannis, M.A. Krokida, 2015. Comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification by products. Ind. Crop. Prod., 75, 141–149. [Google Scholar]
  15. [15]       N. Benbettaïeb, O. Chambin, T. Karbowiak, F. Debeaufort, F., 2016. Release behaviour of quercetin from chitosan fish gelatin edible films influenced by electron beam irradiation. Food Control, 66, 315-319. [Google Scholar]
  16. [16]    M.A. Cerqueira, A.C. Pinheiro, H.D. Silva, P.E. Ramos, M.A. Azevedo, M.L. FloresLopez, M.C. Rivera, A.I. Bourbon, O.L. Ramos, A.A. Vicente, 2014. Design of Bio-nanosystems for Oral Delivery of Functional Compounds. Food Engineering Reviews, 6 (1–2), 1–19. [Google Scholar]
  17. [17]    Topkaya, C., 2017. Nar kabuğu tozu ilavesinin keklerin besinsel, duyusal ve mikrobiyolojik özelliklerine etkisi. Master Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü. [Google Scholar]
  18. [18]    Okur, M., Aktı, F., Çetintaş, A., 2018. Polianilin/Aljinat malzemesinin asit violet 90 boyar maddesinin gideriminde kullanılması: Kinetik ve izoterm değerlendirmesi. GU J Sci, 729-740. [Google Scholar]
  19. [19]    Batori, V., Jabbari, M., Åkesson, D., Lennartsson, P. R., Taherzadeh, M. J.,  Zamani, A., 2017. Production of pectincellulose biofilms: a new approach for citrus waste recycling. International Journal of Polymer Science. [Google Scholar]
  20. [20]    Yaradoddi, J. S., Banapurmath, N. R., Ganachari, S. V., Soudagar, M. E. M., Sajjan, A. M., Kamat, S.,  Ali, M. A., 2022. Bio-based material from fruit waste of orange peel for industrial applications. Journal of Materials Research and Technology, 17, 3186-3197. [Google Scholar]
  21. [21]    Ai, B., Zheng, L., Li, W., Zheng, X., Yang, Y., Xiao, D.,  Sheng, Z., 2021. Biodegradable cellulose film prepared from banana pseudo-stem using an ionic liquid for mango preservation. Frontiers in Plant Science, 12, 234. [Google Scholar]
  22. [22]    Karakuş E., 2022. Nar Ve Portakal Kabuğu Atıklarından Biyobazlı Gıda Ambalaj Malzemesi Geliştirilmesi Ve Karakterizasyonu. Sakarya Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Bölümü, Sakarya. [Google Scholar]
  23. [23]    Pirsa, S., Karimi Sani, I., Pirouzifard, M. K.,  Erfani, A., 2020. Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage. Food Additives & Contaminants: Part A, 37(4), 634- 648. [Google Scholar]
  24. [24]    Karakuş E. Ayhan Z., 2019. Gıda Atıklarından Çevre Dostu Biyobozunur Ambalaj Malzemesi Üretimi. Gıda The Journal of Food, 44 (6), 1008-1019.   [Google Scholar]
  25. [25]    Borah, P. P., Das, P.,  Badwaik, L. S., 2017. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development, Ultrasonics Sonochemistry, 36, 11–19. [Google Scholar]
  26. [26]    Jan-Georg Rosenboom, Robert Langer,  Giovanni Traverso,  2022. Bioplastics for a circular economy. Nature Reviews Materials,  7,  117–137. [Google Scholar]
  27. [27]    F.C. Rockett, H. Schmidt, L. Schmidt, E. Rodrigues, B. Tischer, V. Ruffo de Oliveira, V.L. da Silva, P.R. Augusti, S.H. Flôres, A. Rios, 2020. Phenolic compounds and antioxidant activity in vitro and in vivo of Butia and Opuntia fruits. Food Res Int, 137, 109740. [Google Scholar]
  28. [28]    S. Struck, M. Plaza, C. Turner, H. Rohm, 2016. Berry pomace – a review of processing and chemical analysis of its polyphenols. International Journal of Food Science and Technology, 51, 1305–1318. [Google Scholar]
  29. [29]    Sojka M., Król B, 2008. Composition of industrial seedless black currant pomace. European Food Research and Technology, 228, 597–605. [Google Scholar]
  30. [30]    R.C. Khanal, L.R. Howard, C.R. Brownmiller, R.L. Prior, 2009. Influence of extrusion processing on procyanidin composi- tion and total anthocyanin contents of blueberry pomace. Journal of Food Science, 74, H52–H58. [Google Scholar]
  31. [31]    M.S.M. Basri, N.N.A.K. Shah, A. Sulaiman, I.S.M.A. Tawakkal, M.Z.M. Nor, S.H. Ariffin, N.H.A. Ghani, F.S.M. Salleh, 2021. Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers, 13, 3503. [Google Scholar]
  32. [32]    D.H. Kringel, A.R.G. Dias, E.D.R. Zavareze, E.A. Gandra, 2020. Fruit wastes as promising sources of starch: Extraction, properties, and applications. Starch-Stärke, 72, 1900200. [Google Scholar]
  33. [33]    M.A. Hassan, L.N. Yee, P.L. Yee, H. Ariffin, A.R. Raha, Y. Shirai, K. Sudesh, 2013. Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy, 50, 1–9. [Google Scholar]
  34. [34]    C.L. Luchese, T. Garrido, J.C. Spada, I.C. Tessaro, K. de la Caba, K., 2018. Development and characterization of cassava starch films incorporated with blueberry pomace. Int. J. Biol. Macromol., 106, 834–839. [Google Scholar]
  35. [35]    A. Ali, Y. Chen, H. Liu, L. Yu, Z. Baloch, S. Khalid, J. Zhu, L. Chen, 2019. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol., 129, 1120–1126. [Google Scholar]
  36. [36]    T. De Moraes Crizel, T.M.H. Costa, A. de Oliveira Rios, S.H. Flôres, 2016. Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Ind. Crop. Prod. 87, 218–228. [Google Scholar]
  37. [37]    U. Shukor, N. Nordin, I. Tawakkal, R. Talib, S. Othman, 2021. Utilization of jackfruit peel waste for the production of biodegradable and active antimicrobial packaging films. In Biopolymers and Biocomposites from Agro-Waste for Packaging Applications; Elsevier: Amsterdam, The Netherlands, pp. 171–192. [Google Scholar]
  38. [38]    R. Priyadarshi, B. Kumar, F. Deeba, A. Kulshreshtha, Y.S. Negi, 2018. Chitosan films incorporated with Apricot (Prunus armeniaca) kernel essential oil as active food packaging material. Food Hydrocoll., 85, 158–166. [Google Scholar]
  39. [39]    D. Lin, Y. Zheng, X. Wang, Y. Huang, L. Ni, X. Chen, Z. Wu, C. Huang, Q. Yi, J. Li, 2020. Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. Int. J. Biol. Macromol., 165, 1241–1249. [Google Scholar]
  40. [40]    Falguera V., Quintero J., Jimenez A., Munoz J.A., Ibarz A. 2011. Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science and Technology, 22(6), 292-303. [Google Scholar]
  41. [41]    Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R., Gavara R. 2014. Advances in antioxidant active food packaging. Trends in Food Science and Technology, 35(1), 42–45. [Google Scholar]
  42. [42]    Ponce A. G., Roura S. I., Valle C., Moreira M. 2008. Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: In vitro and in vivo studies. Postharvest Biology and Technology, 49(2), 294-300. [Google Scholar]
  43. [43]    Tornuk F., Akman P. 2023. Chapter 18 - Biodegradable polymer nanocomposites for food packaging applications, Biodegradable and Biocompatible Polymer Nanocomposites, 639-674. [Google Scholar]
  44. [44]    Kurek M.,  Galus s.,  Debeaufort F. 2014. Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein, Food Packaging and Shelf Life, 1 (1), 56-67. [Google Scholar]
  45. [45]    Guilbert S., Gontard N., Gorris L. 1996. Prolongation of the Shelf-life of Perishable Food Products using Biodegradable Films and Coatings. LWT - Food Science and Technology, 29 (1-2), 10–17. [Google Scholar]
  46. [46]    Hosseini S., Rızai M., Zandi M.,  Farahmandghavi  F. 2015. Bio-based composite edible films containing Origanum vulgare L. essential oil, Industrial Crops and Products, 67, 403-413. [Google Scholar]
  47. [47]    Gontard N., Guılbert, S. Cuo L. 1992. Edible wheat gluten films: influence of main process variables on films properties using response surface methodology. Journal of Food Science, 57, 190–199. [Google Scholar]