- Akal, P.S., T. Avav and I. E. Magani (2012). Effects of time of intercropping of Mucuna (Mucuna cochinchinensis) in maize (Zea mays) for weed and soil fertility management. Int. J. Agric. Biol., 1814–9596. [Google Scholar]
- Avav T., P. A. Shave and P. H. Hilakaan (2008). Growth of Mucuna accessions under fallow and their influence on soil and weeds in a sub-humid savanna environment. J. Appl. Biosci., 10, 224 -228. [Google Scholar]
- Céspedes, C. L., J. G. Avila, J. C. Marin, M. Dominguez, P. Torres, and E. Aranda (2006). Natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides. In: Rai, M. & Carpinella, M.C. (eds) Naturally Occurring Bioactive Compounds. Advances in Phytomedicine Vol 3. Elsevier, the Netherlands, pp. 1–27. [Google Scholar]
- Chon, S. U., Y. M. Kim and J. C. Lee (2003). Herbicidal potential and quantification of causative allelochemicals from several Compositae weeds. Weed Res., 43, 444 - 450. [Google Scholar]
- Coloquhoun, J. B. (2006). Allelopathy in Weeds and Crops: Myths and facts. Proc. of the Wisconsin fertilizer, aglime and pest management conference, 45, 318 – 320. [Google Scholar]
- Fujii, Y., Tomoko, S. & Tamaki, Y. (1991). L-3,4-Dihydroxyphenyalalanine as an Allelopathic Candidate from Mucuna pruriens (L.) DC. var utilis. Agric. Biol. Chem., 55 (2), 617-618. [Google Scholar]
- Fujii, Y. (1991). Screening of allelopathic candidates by new specific discrimination and assessment methods for allelopathy, and the inhibition of L-DOPA as the allelopathic substance from the most promising velvetbean (Mucuna pruriens). Bull. Nat. Inst. Agro-Environ. Sci., 10, 115–218. (in Japanese with English summary). [Google Scholar]
- Hasnol, O., M. D. Farawahida, H. Zulkifli (2012). Best management practices for oil palm cultivation on peat: Mucuna bracteata as a cover ground crop. Malaysia Palm Oil Board (MPOB) information series. ISSN 1511 -7871. p. 588-592. [Google Scholar]
- Hooper, A.M., M. K. Tsanuo, K. Chamberlain, K. Tittcomb, J. Z. Scholes, A. Hassanali, Z. R. Khan and J. A. Picketta (2010). Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochem., 71, 904–908. [Google Scholar]
- Hussain, M. I., L. Gonzalez and M. J. Reigosa (2011). Allelopathic potential of Acacia melanoxylon on the germination and root growth of native species. Weed Biol. Manag., 11, 18 – 28. [Google Scholar]
- Macías, F. A., D. Castellano and J. M. G. Molinillo (2000). Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J. Agric. Food Chem., 48, 2512–2521. [Google Scholar]
- Meksawat, S., and T. Pornprom (2010). Allelopathic effect of itchgrass (Rottboellia cochinchinensis) on seed germination and plant growth. Weed Biol. Manag., 10, 16 – 24. [Google Scholar]
- Muñoz, E., C. Lamilla, J. C. Marin, J. Alarcon and C. L. Cespedes (2013). Antifeedant, insect growth regulatory and insecticidal effects of Calceolaria talcana (Calceolariaceae) on Drosophila melanogaster and Spodoptera frugiperda. Ind. Crop Prod., 42, 137-144. [Google Scholar]
- Nwaichi, E. O. & Ayalogu, E. O. (2010). Allelopathy as expressed by Mucuna pruriens and the possibility for weed management. Int. J. Plant Physiol. Biochem., 2, 1–5. [Google Scholar]
- Rice, E.L. (1984). Allelopathy, 2nd edition.Academic Press, Orlando, FL, 422pp. [Google Scholar]
- Shararudin, B. & Jamaluddin, N. (2007). Golden Hope’s experiences with establishing Mucuna bracteata under oli palm. Mucuna bracteata: A cover crop and Living Green Manure (Goh, K. J. and Chiu, S. B. eds.). Agricultural Crop Trust. P. 97 – 109. [Google Scholar]
- Siddiqui, Z. S. (2007). Allelopathic effects of black pepper leachings on Vigna mungo. Acta Physiol. Plant., 29(4), 303-308. [Google Scholar]
- Weir, T. L., S. W. Park and J. M. Vivanco (2004). Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant. Biol., 7, 472–9. [Google Scholar]
|