International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(3) 280-297

Determination of the Effectiveness of Some Fungicides on Botrytis cinerea, the Causative Agent of Grapevine Gray Mold Disease

Ayşe Kaya & Fatih Mehmet Tok

pp. 280 - 297   |  DOI: https://doi.org/10.29329/ijiaar.2023.602.3

Published online: September 30, 2023  |   Number of Views: 31  |  Number of Download: 128


Abstract

In this study, the effectiveness of Fenhexamid, Captan, Cyprodinil, Pyrimethanil and Hymexazol on Botrytis cinerea isolates obtained from vineyards were determined. For this purpose, the efficacy of fungicides at 0.01, 0.05, 0.05, 0.1, 0.5, 1, 5, 10, 25 and 50μg/mL concentrations of each fungicide on mycelium development of Botrytis cinerea and on grape berries were investigated. PDA media containing different doses of fungicides were used to determine their efficacy on mycelium growth. In order to determine their efficacy on grape berries, they were wounded with a needle and treated with fungicides in two different ways, before and after infection. As a result of the experiment, Fenhexamide inhibited mycelium growth 100% at 0.5ppm, while the other fungicides hymexazole, cyprodinil and pyrimethanil inhibited 100% at 25ppm. Captan reached 100% inhibition rate only at 50ppm. In grape berries trials, fenhexamide and captan were more effective after infection, pyrimethanil was more effective when applied before infection, but hymexazole and cyprodinil had the same effect when applied before or after infection.

Keywords: Grape, Botrytis Cinerea, Chemical Control, Resistance, Fungicides


How to Cite this Article

APA 6th edition
Kaya, A. & Tok, F.M. (2023). Determination of the Effectiveness of Some Fungicides on Botrytis cinerea, the Causative Agent of Grapevine Gray Mold Disease . International Journal of Innovative Approaches in Agricultural Research, 7(3), 280-297. doi: 10.29329/ijiaar.2023.602.3

Harvard
Kaya, A. and Tok, F. (2023). Determination of the Effectiveness of Some Fungicides on Botrytis cinerea, the Causative Agent of Grapevine Gray Mold Disease . International Journal of Innovative Approaches in Agricultural Research, 7(3), pp. 280-297.

Chicago 16th edition
Kaya, Ayse and Fatih Mehmet Tok (2023). "Determination of the Effectiveness of Some Fungicides on Botrytis cinerea, the Causative Agent of Grapevine Gray Mold Disease ". International Journal of Innovative Approaches in Agricultural Research 7 (3):280-297. doi:10.29329/ijiaar.2023.602.3.

References
  1. Alzohairy, S.A., Gillett, J., Saito, S., Naegele, R.N., Xiao, C.L., and Miles, T.D. (2021). Fungicide Resistance Profiles of Botrytis cinerea Isolates From Michigan Vineyards and Development of a TaqMan Assay for Detection of Fenhexamid Resistance. Plant Disease, 105:285-294. [Google Scholar]
  2. Aminifard, M.H., Mohammadi, S. (2012). Essential oils to control Botrytis cinerea in vitro and in vivo on plum fruits. J. Sci. Food Agric. 93:348–353. [Google Scholar]
  3. Angelini, R.M., Rotolo, C., Masiello, M., Gerin, D., Pollastro, S., and Faretra, F. (2014). Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag Sci. 70: 1785–1796. [Google Scholar]
  4. Ateş, F., & Karabat, S. (2016). Kaliteli Sofralık Üzüm Yetiştirmeye Yönelik Kültürel Uygulamalar. Manisa Bağcılık Araştırma Enstitüsü Dergisi, 12(4):85-89. [Google Scholar]
  5. Çelik, H., Ağaoğlu, Y.S., Fidan, Y., Marasalı, B., & Söylemezoğlu, G. (1998). Genel bağcılık sunfidan mesleki kitaplar serisi: 1, 253s. Ankara. [Google Scholar]
  6. Delen, N. (2006). Kurşuni küf hastalığı etmeni Botrytis cinerea’nın bağdaki epidemiyolojisi ve savaşımı. Basak Tarım Dergisi, 4:68-72. [Google Scholar]
  7. Delp, C. J. & Dekker, J. (1985). Fungicide resistance: definitions and use of terms. EPPO Bulletin, 15 (3), 333-335. [Google Scholar]
  8. Demirci, E. (1996). Fungisitlere Karşı Dayanıklılığın Gelişimi ve Yönetim. Atatürk Ü.Zir.Fak.Der. 27(4), 576-588. [Google Scholar]
  9. Elmer, P.A.G., & Michailides, T.J. (2007). Epidemiology of Botrytis cinerea in orchard and vine crops. Botrytis: Biology, Pathology Con., Springer, 243- 272, Netherlands. [Google Scholar]
  10. Fao (2020). Food and Agriculture Organization of the United Nations (FAO). Retrieved from https://www.fao.org/giews/countrybrief/country.jsp?code=TUR&lang=en [Google Scholar]
  11. Fernández-Ortuño, D., Grabke, A., Li, X., & Schnabel, G. (2015). Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea. Phytopathology, 105: 424–432. [Google Scholar]
  12. Genescope, (2002). Botrytis cinerea Estimated losses to vineyards in France, (Annual Report, UIPP). [Google Scholar]
  13. Georgopoulos, S.G. (1982). Genetical and biochemical background of fungicide resistance. Fungicide Resistance in Crop Protection, Dekker, J. and Georgopoulos, S. G. (Eds.), Center for Agricultural Publishing and Documentation, Wageningen, 46-52 pp. [Google Scholar]
  14. Hill, G.N., Beresford, R.M., and Evans, & K.J. (2010). Tools for accurate assessment of botrytis bunch rot (Botrytis cinerea) on wine grapes. New Zealand Plant Protection 63: 174-181. [Google Scholar]
  15. Jermini, M., & Gessler, C. (1996). Epidemiology and Control of grape black rot in southern Switzeland. Plant Dis. 80:322-325. [Google Scholar]
  16. Komarek, M., Čadkova, E., Chrastny, V., Bordas, F., & Bollinger, J.C. (2010). Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ. Int., 36:138-151. [Google Scholar]
  17. Li, X., Fernandez-Ortu~no, D., Chen, S., Grabke, A., Luo, C.-X., Bridges, W. C., & Schnabel, G. (2014). Location-specific fungicide resistance profiles and evidence for stepwise accumulation of resistance in Botrytis cinerea. Plant Dis. 98:1066-1074. [Google Scholar]
  18. Mundy, D.C., Agnew, R.H. and Wood, P.N. (2014). Grape tendrils as an inoculum source of Botrytis cinerea in vineyards. International Journal of Research in Applied, Natural and Social Sciences, 2 (6), 211-218. [Google Scholar]
  19. Panebianco, A., Castello, I., Cirvilleri, G., Perrone, G., Epifani, F., Ferrara, M., Polizzi, G., Walters, D.R., & Vitale, A. (2015). Detection of Botrytis cinerea field isolates with multiple fungicide resistance from table grape in Sicily. Crop Protection. 77: 65-73. [Google Scholar]
  20. Saito, S., Cadle-Davidson, L., & Wilcox, W.F. (2014). Selection, fitness, and control of grape isolates of Botrytis cinerea variably sensitive to fenhexamid. Plant Dis. 98:233-240. [Google Scholar]
  21. Saito, S., Michailides, T.J., & Xiao, C.L. (2019). Fungicide-resistant phenotypes in Botrytis cinerea populations and their impact on control of gray mold on stored table grapes in California. Eur J Plant Pathol. 154:203–213. [Google Scholar]
  22. Schilder, A.M.C., Erincik, O., Castlebury, L., Rossman, A., & Ellis, M.A. (2005). Characterization of Phomosis spp. infecting grapevines in the Great Lakes region of North America. Plant Dis. 89:755-762. [Google Scholar]
  23. Shao, W., Ren, W., Zhang, Y., Hou, Y., Duan, Y., Wang, J., Zhou, M. & Chen, C. (2015). Baseline sensitivity of natural populations and characterization of resistant strains of Botrytis cinerea to fluazinam. Australasian Plant Pathol, 44:375–383. [Google Scholar]
  24. Veloukas, T., Kalogeropoulou, P., Markoglou, A.N., & Karaoglanidis, G.S. (2014). Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Phytopathology, 104:347- 356. [Google Scholar]
  25. Walker, A.S., Micoud, A., Rémuson, F., Grosman, J., Gredt, M., & Leroux, P. (2013). French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Management Science, 69, 667–678. [Google Scholar]
  26. Wang, X., Glawe, D.A., Kramer, E., Weller, D., & Okubara, P.A. (2018). Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Phytopathology, 108:691-701. [Google Scholar]
  27. Weber, R.W.S. (2010). Occurrence of Hyd R3 fenhexamid resistance among Botrytis isolates in northern German soft fruit production. Journal of Plant Disease and Protection, 117, 177–179. [Google Scholar]
  28. Winkler, A.J., Cook, J.A., Kliewer, W.M., & Lider, L.A. (1974). General viticulture technique in California. General Viticulture. 5:521-525. [Google Scholar]
  29. Wu, M.D., Zhang, L., Li, G., Jiang, D., & Ghabrial, S.A. (2010). Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology, 406(1):117–126. [Google Scholar]
  30. Yin, Y.N., Kim, Y.K., & Xiao, C.L. (2012). Molecular characterization of pyraclostrobin resistant and structural diversity of the cytochrome be gene in Botrytis cinerea from apple. Phytopathology, 102, 315–322. [Google Scholar]