- Adams, W.T., & Birkes, D.S. (1989). Mating patterns in seed orchards. In: Proceedings of 20th Southern Forest tree Improvement Conference, June 26-30, 1989, Charleston, South Carolina. [Google Scholar]
- Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., & Sork, V.L. (2004). Using genetic markers to estimate the polen dispersal curve. Molecular Ecology, 13: 937-954. [Google Scholar]
- Balloux, F., & Lugon-Moulin, N. (2002). The estimation of population differentiation with microsatellite markers. Molecular Ecology, 11: 155-165. [Google Scholar]
- Bandelj, D., Jakse, J., & Javornik, B. (2004). Amplification of fluorescent-labelled microsatellite markers in olives by a novel, economic method. Acta agriculturae Slovenica, 83(2): 323-329. [Google Scholar]
- Bilgen, B.B., & Kaya, N. (2014). Chloroplast DNA variation and pollen contamination in a Pinus brutia Ten. clonal seed orchard: implication for progeny performance in plantations. Turkish Journal of Agriculture and Forestry, 38: 540-549. [Google Scholar]
- Bilgen, B.B., & Kaya, N. (2016). Use of nSSR markers for determination of clonal identity and genetic structure in a Pinus brutia Ten. clonal seed orchard. Fresenius Environmental Bulletin, 25(9): 3687-3693. [Google Scholar]
- Bilir, N., Kang, K.S., Zang, D., & Lindgren, D. (2004). Fertility variation and status number between a base population and a seed orchard of Pinus brutia. Silvae Genetica, 53: 161-163. [Google Scholar]
- Bradshaw, A.D. (1972). Some of the evolutionary conseqences of being a Plant. In: M. Dobzhansky K. Hecht and W.C. Stere (Eds.). Evolutionary Biology. Appl. Century Crofts, 25-47, New York. [Google Scholar]
- Buiteveld, J., Bakker, E.G., Bovenschen, J., & de Vries, S.M.G. (2001). Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers. Forest Genetics, 8 (4): 331-337. [Google Scholar]
- Chen, X., Sun, X., Dong, L., & Zhang, S. (2018). Mating patterns and pollen dispersal in a Japanese larch (Larix kaempferi) clonal seed orchard: a case study. Sci. China Life Sci. 61: 1011-1023. https://doi.org/10.1007/s11427-018-9305-7 [Google Scholar] [Crossref]
- D’Amico, I., Juan, C.V., Beatriz, O.S., Ewens, M., & Bessega, C. (2019). Pollen contamination and mating patterns in a Prosopis alba clonal orchard: impact on seed orchards establishment. iForest, 12: 330-337. https://doi.org/10.3832/ifor2936-012 [Google Scholar] [Crossref]
- Di-Giovanni, F., & Kevan, P.G. (1991). Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal of Forest Research, 21: 1155-1170. [Google Scholar]
- Dzialuk, A., Muchewicz, E., Boratynski, A., Montserrat, J.M., Boratynska, K., & Burczyk, J. (2009). Genetic variation of Pinus uncinata (Pinaceae) in the Pyrenees determined with cpSSR markers. Plant Systematics and Evolution, 277: 197-205. [Google Scholar]
- El-Kassaby, Y.A., Rudin, D., & Yazdani, R. (1989). Levels of outcrossing and contamination in two Pinus sylvestris L. seed orchards in Northern Sweden. Scandinavian Journal of Forest Research, 4: 41-49. [Google Scholar]
- Ennos, R.A. (1994). Estimating the relative rates of pollen and seed migration among plant populations. Heredity, 72: 250-259. [Google Scholar]
- Ertekin, M. (2012). Genetic diversity of seed orchard crops, The molecular basis of plant genetic diversity, Prof. Mahmut Caliskan (Ed.), ISBN: 978-953-51-0157-4, InTech, http://www.intechopen.com/books/the-molecular-basis-of-plant-genetic-diversity/genetic-diversity-of-seedorchard-crops. [Google Scholar]
- Feng, F.J., Suı, X., Chen, M.M., Zhao, D., Han, S.J., & Li, M.H. (2010). Mode of pollen spread in clonal seed orchard of Pinus koraiensis. Journal of Biophysical Chemistry, 1(1): 33-39. [Google Scholar]
- Feilberg, L., & Soegaard, B. (1975). Historical review of seed orchards, in. Seed orchards, Forestry Commission Bulletin, No.54, pp. 1-8, London, England. [Google Scholar]
- Fernandes, L., Rocheta, M., Cordeiro, J., Pereira, S., Gerber, S., Oliveira, M.M., & Ribeiro, M.M. (2008). Genetic variation, mating patterns and gene flow in a Pinus pinaster Aiton clonal seed orchard. Annals of Forest Science, 65: 706p1-10. [Google Scholar]
- Funda, T., & El-Kassaby, Y.A. (2012). Seed orchard genetics. CAB Reviews, 7: 13. [Google Scholar]
- Gonzaga, J.M.S., Manoel, R.O., Sousa, A.C.B., Souza, A.P., Moraes, M.L.T., Freitas, M.L.M., & Sebbenn, A.M. (2016). Pollen contamination and nonrandom mating in a Eucalyptus camaldulensis Dehnh seedling seed orchard. Silvae Genetica, 65: 1-11. https://doi.org/10.1515/sg-2016-0001 [Google Scholar] [Crossref]
- Greenwood, M.S., & Rucker, T. (1985). Estimating pollen contamination in Loblolly pine seed orchards by pollen trapping. Proc. 18th Southern Forest Tree Improv. Conf., May 21-23, 1985. [Google Scholar]
- Hamann, A., El-Kassaby, Y.A., Koshy, M.P., & Namkoong, G. (1998). Multivariate analysis of allozymic and quantitative trait variation in Alnus rubra: geographic patterns and evolutionary implications. Canadian Journal of Forest Research, 28: 1557-1565. [Google Scholar]
- Heywood, V.H., & Iriondo, J.M. (2003). Plant conservation: old problems, new perspectives. Biological Conservation, 113: 321-335. [Google Scholar]
- Işik, K. (1999a). Orman ağacı türlerimizde lokal ırkların önemi ve genetik kirlenme sorunları. Çevre Sorunları, Biyolojik Çeşitlilik ve Orman Gen Kaynaklarımız, TEMA Vakfı, İstanbul. 25: 137-150. [Google Scholar]
- Işik, K. (1999b). Bitki gen kaynaklarımız niçin korunmalı ve planlanmalıdır? Çevre Sorunları, Biyolojik Çeşitlilik ve Orman Gen Kaynaklarımız, TEMA Vakfı, İstanbul. 25: 151-160. [Google Scholar]
- Kang, K.S., Lindgren, D., & Mullin, T.J. (2001a). Prediction of genetic gain and gene diversity in seed orchard crops under alternative management strategies. Theoretical and Applied Genetics, 103: 1099-1107. [Google Scholar]
- Kang, K.S., Harju, A.M., Lindgren, D., Nikkanen, T., Almqvist, C., & Suh, G.U. (2001b). Variation in effective number of clones in seed orchards. New Forests, 21: 17-33. [Google Scholar]
- Kang, K.S., Lindgren, D., & Mullin, T.J. (2004). Fertility variation, genetic relatedness, and their impacts on gene diversity of seeds from a seed orchard of Pinus thunbergii. Silvae Genetica, 53(5-6): 202-206. [Google Scholar]
- Kaya, N. 2005. Orman ağaçlarında eşleşme şekilleri. Süleyman Demirel Üniversitesi, Orman Fakültesi Dergisi, 2: 125-137. [Google Scholar]
- Kaya, N., Isik, K., & Adams, W.T. (2006). Mating system and pollen contamination in a Pinus brutia seed orchard. New For 31: 409-416. [Google Scholar]
- Kaya, Z., Skaggs, A., & Neale, D.B. (2008). Genetic differentiation of Abies equi-trojani (Asch.& Sint. ex Boiss) Mattf. populations from Kazdağı, Turkey and the genetic relationship between Turkish Firs belonging to the Abies nordmanniana Spach complex. Turkish Journal Botany, 32:1-10. [Google Scholar]
- Kess, T., & El-Kassaby, Y.A. (2015). Estimates of pollen contamination and selfing in a coastal Douglas-fir seed orchard. Scandinavian Journal of Forest Research, 30(4): 266-275. https://doi.org/10.1080/02827581.2015.1012112 [Google Scholar] [Crossref]
- Kocaman, B., Toy, S., & Maraklı, S. (2020). Application of different molecular markers in biotechnology. International Journal of Science Letters, 2(2): 98-113. [Google Scholar]
- Kurt, Y., González-Martínez, S.C., Alía, R., & Isik, K. (2012). Genetic differentiation in Pinus brutia Ten. using molecular markers and quantitative traits: the role of altitude. Annals of Forest Science, 69: 345-351. https://doi.org/10.1007/s13595-011-0169-9 [Google Scholar] [Crossref]
- Li, Y.C., Korol, A.B., Fahima, T., Beiles, A., & Nevo, E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 11: 2453-2465. [Google Scholar]
- Lowe, W.J., & Wheeler, N.C. (1993). Pollen contamination in seed orchards. In: D.L. Bramlett, G.R. Askew, T.D. Blush, F.E. Bridgwater and J.B. Jett (eds). Advances in Pollen Management. pp.49-54. USDA Agric. Handb. 698. Washington, DC. [Google Scholar]
- Myers, E.R., Chung, M.Y., & Chung, M.G. (2007). Genetic diversity and spatial genetic structure of Pinus strobus (Pinaceae) across an island landscape inferred from allozyme and cpDNA markers. Plant Systematics and Evolution, 264: 15-30. [Google Scholar]
- Navascues, M., Vaxevanidou, Z, Gonzalez-Martinez, S.C., Climent, J., Gil, L., & Emerson, B.C. (2006). Chloroplast microsatellites reveal colonization and metapopulation dynamics in the Canary Island pine. Molecular Ecology, 15: 2691-2698. [Google Scholar]
- Naydenov, K.D., Tremblay, F.M., Bergeron, Y., Alexandrov, A., & Fenton, N. (2005a). Dissimilar patterns of Pinus heldreichii Christ. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis. Biochemical Systematics and Ecology, 33: 133-148. [Google Scholar]
- Naydenov, K.D., Tremblay, F.M., Alexandrov, A., & Fenton, N.J. (2005b). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochemical Systematics and Ecology, 33: 1226-1245. [Google Scholar]
- Naydenov, K.D., Tremblay, F.M., Fenton, N.J., & Alexandrov, A. (2006). Structure of Pinus nigra Arn. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochemical Systematics and Ecology, 34: 562-574. [Google Scholar]
- OATIAM. (2023). General Directorate of Forestry. Forest Tree Seeds and Tree Breeding Research Directorate. http://www.ortohum.gov.tr/ [Google Scholar]
- Ohsawa, T., & Ide, Y. (2008). Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography, 17: 152-163. [Google Scholar]
- Oliveira, E.J., Padua, J.G., Zucchi, M.I., Vencovsky, R., & Carneiro-Vieria, M.L. (2006). Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology, 29(2): 294-307. [Google Scholar]
- Pakkanen, A., Nikkanen, T., & Pulkkinen, P. (2000). Annual Variation in Pollen Contamination and Outcrossing in a Picea abies Seed Orchard. Scandinavian Journal of Forest Research, 15: 399-404. [Google Scholar]
- Plomion, C., Leprovost, G., Pot, D., Vendramin, G., Gerber, S., Decroocq, S., Brach, J., Raffin, A., & Pastuszka, P. (2001). Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites. Canadian Journal of Forest Research, 31: 1816-1825. [Google Scholar]
- Pupin, S., Sebbenn, A.M., Cambuim, J., da Silva, A.M., Zaruma, D.U.G., Silva, P.H.M., Rosse, L.N., Souza, I.C.G., Marino, C.L., & Moraes, M.L.T. (2019). Effects of pollen contamination and non-random mating on inbreeding and outbreeding depression in a seedling seed orchard of Eucalyptus urophylla. Forest Ecology and Management, 437: 272-281. https://doi.org/10.1016/j.foreco.2019.01.050. [Google Scholar] [Crossref]
- Ribeiro, M.M., Mariette, S., Vendramin, G.G., Szmidt, A.E., Plomion, C., & Kremer, A. (2002). Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Molecular Ecology, 11: 869-877. [Google Scholar]
- Semagn, K., Bjornstad, A., & Ndjiondjop, M.N. (2006). An overview of molecular marker methods for plants. African Journal of Biotechnology, 5(25): 2540-2568. [Google Scholar]
- Sheller, M., Ciocîrlan, E., Mikhaylov, P., Kulakov, S., Kulakova, N., Ibe, A., Sukhikh, T., & Curtu, A.L. (2021). Chloroplast DNA diversity in populations of P. sylvestris L. From Middle Siberia and the Romanian Carpathians. Forests, 12: 1757. https://doi.org/10.3390/f12121757 [Google Scholar] [Crossref]
- Slavov, G.T., Howe, G.T., Yakovlev, I., Edwards, K.J., Krutovskii, K.V., Tuskan, G.A., Carlson, J.E., Strauss, S.H., & Adams, W.T. (2004). Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theoretical and Applied Genetics, 108: 873-880. [Google Scholar]
- Slavov, G.T., Howe, G.T., & Adams, W.T. (2005). Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Canadian Journal of Forest Research, 35(7): 1592-1603. [Google Scholar]
- Sonstebo, J.H., Tollefsrud, M.M., Myking, T., Steffenrem, A., Nilsen, A.E., Edvardsen, O.M., Johnskas, O.R., & El-Kassaby, Y.A. (2018). Genetic diversity of Norway spruce (Picea abies (L.) Karst.) seed orchard crops: Effects of number of parents, seed year, and pollen contamination. Forest Ecology and Management, 411: 132-141. https://doi.org/10.1016/j.foreco.2018.01.009. [Google Scholar] [Crossref]
- Sniezko, R.A. (1981). Genetic and economic consequences of pollen contamination in seed orchards. In: Proceedings, 16th Southern Forest Tree Improvement Conference; 1981 May 27-28: Blacksburg, VA. Blacksburg: Virginia Polytechnic Institute: 225-233. [Google Scholar]
- Soto, A., Robledo-Arnuncio, J.J., Gonzalez-Martinez, S.C., Smouse, P.E., & Alia, R. (2010). Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Molecular Ecology, 19: 1396-1409. [Google Scholar]
- Stoehr, M.U., & Newton, C.H. (2002). Evaluation of mating dynamics in a lodgepole pine seed orchard using chloroplast DNA markers. Canadian Journal of Forest Research, 32: 469-476. [Google Scholar]
- Sütcü, T., Bilgen, B.B., & Tuna, M. (2022). Analysis of genetic diversity among Onobrychis accessions with high agronomic performance by simple sequence repeat (SSR) markers. Molecular Biology Reports, 49: 5659-5668. https://doi.org/10.1007/s11033-022-07584-x [Google Scholar] [Crossref]
- Terrab, A., Paun, O., Talavera, S., Tremetsberger, K., Arısta, M., & Stuessy, T.F. (2006). Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. American Journal of Botany, 93(9): 1274-1280. [Google Scholar]
- Torimaru, T., Wang, X.R., Fries, A., Andersson, B., & Lindgren, D. (2009). Evaluation of pollen contamination in an advanced scots pine seed orchard. Silvae Genetica, 58(5-6): 262-269. [Google Scholar]
- Tunçtaner, K. (2007). Orman genetiği ve ağaç ıslahı, Türkiye Ormancılar Derneği, Eğitim Dizisi: 4, 364 s. [Google Scholar]
- Urbaniak, L., Wojnicka-Poltorak, A., Celinski, K., Lesiczka, P., Pawlaczyk, E., & Aucina, A. (2019). Genetic resources of relict populations of Pinus sylvestris (L.) in Western Carpathians assessed by chloroplast microsatellites. Biologia, 74: 1077-1086. https://doi.org/10.2478/s11756-019-00255-6 [Google Scholar] [Crossref]
- Varshney, R.K., Graner, A., & Sorrels, M.E. (2005). Genic microsatellite markers in plants: features and applications. Trends in Biotechnology, 23: 48-55. [Google Scholar]
- Vendramin, G.G., Lelli, L., Rossi, P., & Morgante, M. (1996). A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology, 5: 595-598. [Google Scholar]
- Vieira, M.L.C., Santini, L., Diniz, A.L., & Munhoz, C.F. (2016). Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol., 39: 312-328. [Google Scholar]
- Wheeler, N., & Jech, K. (1986). Pollen contamination in a mature, Douglas-fir seed orchard. Proc. IUFRO Conf. Breeding, Theory, Progeny testing of seed orchards. Oct. 13-17, 1986. Williamsburg, VA. [Google Scholar]
- Yang, H., Zhang, R., & Zhou, Z. (2017). Pollen dispersal, mating patterns and pollen contamination in an insect-pollinated seed orchard of Schima superba Gardn. et Champ. New Forests, 48: 431-444. https://doi.org/10.1007/s11056-017-9568-6 [Google Scholar] [Crossref]
- Zhuowen, Z. (2002). Pollen dispersal and its spatial distribution in seed orchards of Cunninghamia lanceolata (LAMB.) Hook. Silvae Genetica, 51(5-6): 237-241. [Google Scholar]
- Zobel, B.J., & Talbert, J. (1984). Applied forest tree improvement. John Wiley and Sons, Inc. New York, 505 p. [Google Scholar]
|