International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(3) 325-335

Response of Congo Grass (Brachiaria ruziziensis L. Germain and Evard) to Nitrogen Fertilization on an Oxisol in Western Highlands Agro-ecological Zone of Cameroon

Beyegue Djonko Honore, Marie Amperes Bedıne Boat, Egoume Guissana Antoine, Edmond Vilmorin Ewane Kueptoudji, Jean Pierre Mvondo-Awono & Tankou Christopher

pp. 325 - 335   |  DOI: https://doi.org/10.29329/ijiaar.2023.602.7

Published online: September 30, 2023  |   Number of Views: 97  |  Number of Download: 312


Abstract

In the context of climate change, sustainable fertilization management can be achieved by the use of minimum external agricultural inputs capable of generating both economic and environmental benefits. In this regard, a study conducted in western highlands agro-ecological zone of Cameroon revealed the response of Brachiaria ruziziensis (an important cover crop and forage) to a range of nitrogen levels (0, 50, 100, 150, and 200 kgN.ha-1) combined with a constant level of P2O5 (100 kgN.ha-1) and K2O (50 kg/ha) evaluated using a randomized complete block design. The findings showed that in a regularly cultivated soil, Congo grass is capable of meeting its mineral needs by searching for them in strata of the soil below the cultural profile (0-25 cm). As a result, in comparison to non-fertilized units (27.75 t.ha-1), fertilized units did not provide a significant dry matter yield (P > 0.05). Despite the lack of a significant difference, the yield increased with the addition of nitrogen until it reached 100 kg/ha, and then decreased until it reached 200 kg N.ha-1. As a result, Congo grass should be used as a biological pump, bringing lixiviated minerals to the surface to favor soil fertility replenishment and shorten fallow period.

Keywords: Fertilization, Agricultural inputs, Congo grass, Dry matter, Fallow


How to Cite this Article

APA 6th edition
Honore, B.D., Boat, M.A.B., Antoine, E.G., Kueptoudji, E.V.E., Mvondo-Awono, J.P. & Christopher, T. (2023). Response of Congo Grass (Brachiaria ruziziensis L. Germain and Evard) to Nitrogen Fertilization on an Oxisol in Western Highlands Agro-ecological Zone of Cameroon . International Journal of Innovative Approaches in Agricultural Research, 7(3), 325-335. doi: 10.29329/ijiaar.2023.602.7

Harvard
Honore, B., Boat, M., Antoine, E., Kueptoudji, E., Mvondo-Awono, J. and Christopher, T. (2023). Response of Congo Grass (Brachiaria ruziziensis L. Germain and Evard) to Nitrogen Fertilization on an Oxisol in Western Highlands Agro-ecological Zone of Cameroon . International Journal of Innovative Approaches in Agricultural Research, 7(3), pp. 325-335.

Chicago 16th edition
Honore, Beyegue Djonko, Marie Amperes Bedine Boat, Egoume Guissana Antoine, Edmond Vilmorin Ewane Kueptoudji, Jean Pierre Mvondo-Awono and Tankou Christopher (2023). "Response of Congo Grass (Brachiaria ruziziensis L. Germain and Evard) to Nitrogen Fertilization on an Oxisol in Western Highlands Agro-ecological Zone of Cameroon ". International Journal of Innovative Approaches in Agricultural Research 7 (3):325-335. doi:10.29329/ijiaar.2023.602.7.

References
  1. Abdoulaye, A. A., Oumarou, B., Mahamat, A., Dourwe, G., Daoudou, T., Mana, J., Adoum, Y. (2013). Fiches techniques des plantes de couverture. Compendium SCV Cameroun et savanes, 3(1), 4pp. [Google Scholar]
  2. Ansong, O. R., Bellingrath K. S. D., Sarkodee, A, E., Oikawa, Y., Fujii, Y. (2018). Exploring farmers’ indigenous knowledge of soil quality and fertility management practices in selected farming communities of the Guinea savannah agro-ecological zone of Ghana. Sustainability, 10, 1034. https://doi.org/10.3390/su10041034 [Google Scholar] [Crossref] 
  3. Appadurai, R. R and Goonawardene, L. (1973). Performance of three fodder grasses under high nitrogen applications in the mid-country wet zone of Sri Lanka. Journal of the National Agricultural Society, 8: 31-37. [Google Scholar]
  4. Beernaert, F and Bitondo, D. (1992). Sample and practical methods to evaluate analytical data of soil profiles. Soil science department. Belgian cooperation, University of Dschang, 66 p. [Google Scholar]
  5. Calonego, J. C., Raphae, J. A., Rigon, J. G., de Oliveira, N. L., Rosolem, C. A. (2017).  Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling, European Journal of Agronomy, 85 31–37. [Google Scholar]
  6. Cook, B. G., Pengelly, B. C., Brown, S. D., Donnelly, J. L., Eagles, D. A., Franco, M. A., Hanson, J.,Partridge, I. J., Peter, M., & Schultze-Kraft, R. (2005). Tropical Forages: An interactive selection tool. Brisbane, Australia, CSIRO, DPI and F, CIAT, ILRI. [Google Scholar]
  7. Costa, C. H. M, Crusciol, C. A. C., Soratto, R. P., Ferrari, N. J., Moro, E. (2012). Nitrogen fertilization on palisadegrass: phytomass decomposition and nutrients release. Pesqui Agropecu Tropia. 46, 159–168. [Google Scholar]
  8. Crush, J. R., Waller, J. E., Care, D. A. (2005). Root distribution and nitrate interception in eleven temperate forage grasses, Grass Forage Science. 60 (4), 385–392. [Google Scholar]
  9. Damaceno, J. B. D., Lobato, A. C. N., Torres, G. R., Alves, S. C., Martins, J. K. D., Monteiro, O. D, Tucci, C. A. F., Falcão, N. P. S., Ferreira, E. (2019).  Agronomic efficiency of bone meal under acidification in Brachiaria ruziziensis dry matter production in Western Amazon. Journal of Experimental Agriculture International, 34(4), 1-7 [Google Scholar]
  10. Husson, O., Charpentier, H., Razanamparany, C., Moussa, N., Michellon, R., Naudin, K., Razafintsalama, H., Rakotoarinivo, C., Rakotondramanana, Seguy L. (2008). Brachiaria sp. Manuel pratique du semis direct à Madagascar, 3(3), 2 p.  [Google Scholar]
  11. Maurice, E. H., Rober, F. B., Darrel, S. M. (1985).Forages: The science of grassland agriculture. Iowa State University press. Arnes, Iowa, USA, pp. 318-325. [Google Scholar]
  12. Nascente, A. S., Crusciol, C. A. C., Cobucci, T. (2013). The no-tillage system and cover crops-Alternatives to increase upland rice yields. European Journal of Agronomy, 45, 124-131.  [Google Scholar]
  13. Nunes, R. S., Lopes, A.A.C., Sousa, D.M.G., Mendes, I.C. (2011). Management systems and the carbon and nitrogen stocks of cerrado oxisol under soybean-maize succession. Rev Bras Ciênc Solo, 35, 1407–1419. [Google Scholar]
  14. Obulbiga, M. F. and Kaboré-Zoungrana, C.Y. (2007).Influence de la fumure azotée et du rythme d’exploitation sur la production de matière sèche et la valeur alimentaire d’Andropogon gayanus kunth au Burkina Faso. Tropicultura, 25(3), 161-167. [Google Scholar]
  15. Olsen, F. J. (1982). Effect of large application of nitrogen fertilizer on the production and protein contents of four tropical grasses in Uganda. Tropical Agriculture, 49, 251-260. [Google Scholar]
  16. Omotayo, O. E. and Chukwuka, K. S. (2009). Soil fertility restoration techniques in sub-Saharan Africa using organic resources. African Journal of Agricultural Research, 4(3), 144-150, [Google Scholar]
  17. Paiva, B. B., Fernandes, L. M., Fidelis, P. B., Barbosa, N. R., Bento, R. A., Rocha, R. F. A. B. (2019). Tissue flow and biomass production of Piatã grass in function of defoliation frequency and nitrogen fertilization. Colloquium Agrariae, 15, 92-100. [Google Scholar]
  18. Pamo, E. T. (1991). Réponse de Bruchiaria ruziziensis Germain et Evrard à la fertilisation azotée, et à différents rythmes d’exploitation en Adamaoua, Cameroun. Revue Elev. Méd. vét. Pays trop, 44(3)37 3-380 [Google Scholar]
  19. Pamo, T.E., Boukila, B., Meduke, C.N., Tendonkeng F. (2008).Effect of nitrogen fertilisation and cutting frequency on the yield and regrowth of Panicum maximum Jacq in West Cameroon. In: Xie Haining and Huang Jiehua (Editors). XXI International Grassland Congress / VIII International Rangeland Congress Hohhot, China, 29th June-5th July 2008. 354 p. [Google Scholar]
  20. Pereira, F. C. B. L., Mello, L. M. M., Pariz, C. M., Mendonça, V. Z., Yano, E.H., Miranda, E. E. V., Crusciol, C. A. C. (2016). Autumn maize intercropped with tropical forages: crop residues, nutrient cycling, subsequent soybean and soil quality. Revista Brasileira de Ciência do Solo, doi: 10.1590/18069657rbcs20150003 [Google Scholar] [Crossref] 
  21. Seidel, E. P., Anschau, K. A., Achre, D., Mottin, M. C., Lerner, K. L., Vengen, A. P., Franscziskowski, M. A., Mattei E. (2017). Physical properties of soil and productivity of maize intercropped with different cover plants. African Journal of Agricultural Research. 12(39), 2940-2945. [Google Scholar]
  22. Silva, D. R. G., Costa, K. A. P., Faquin, V., Oliveira, I. P., Bernardes, T. F. (2013). Rates and sources of nitrogen in the recovery of the structural and productive characteristics of marandu grass. Revista Ciencia Agronomica, 44(1), 184-191.  [Google Scholar]
  23. Silveira, M. L. and Kohmann, M. M. (2020). Maintaining soil fertility and health for sustainable pastures. Management strategies for sustainable cattle production in southern pastures. Academic Press, pp35-58. [Google Scholar]
  24. Zanine, A.,Farias, L., Rodrigues, R., Ferreira ,D., Santos, E., Farias, L., Oliveira, J., Ribeiro, M., Sousa, L., Souza, A.,Negrão, F., Pinho, R.,Nascimento T. (2020). Effect of season and nitrogen fertilization on theagronomic traits and efficiency of Piatã Grass in Brazilian savanna. Agriculture, 10, 337, doi:10.3390/agriculture10080337 [Google Scholar] [Crossref] 
  25. Zhenghong, Y., Yanyun, Z, Jiabao, Z., Congzhi, Z., Donghao, M., Lin, C., Taiyi, C. (2020). Importance of soil interparticle forces and organic matter for aggregate stability in a temperate soil and a subtropical soil. Geoderma, 362, https://doi.org/10.1016/j.geoderma.2019.114088 [Google Scholar] [Crossref]