International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(1) 1-24

Environment- and Genotype-Dependent Stability in the Common Wheat Grain Quality (Triticum aestivum L.)

Nikolay Tsenov, Todor Gubatov & Ivan Yanchev

pp. 1 - 24   |  DOI: https://doi.org/10.29329/ijiaar.2023.536.1

Published online: March 29, 2023  |   Number of Views: 48  |  Number of Download: 307


Abstract

The study was conducted to evaluate the stability of common wheat varieties in four locations with proven different environmental conditions. Three indexes of grain quality were studied: wet gluten content, (WGC); gluten index of grain (GI) and grain sedimentation value (Zeleny). The stability of varieties has been evaluated by many parameters that reflect different aspects of the complete picture for it. The indexes studied are strongly influenced by environmental conditions. The most genetically stable among them is the gluten index (GI), where the genotype has a decisive role of about 70% of the variation, and the most unstable is the wet gluten content (WGC), with only 17% of the effect. As a result of reliable GE, the ranking of the varieties according to the performance of each of the indexes is different in the individual locations. The ranking of varieties in terms of stability according to the ranks of each of the parameters is very different. Even a visual representation of the results, which clears the picture to the maximum extent, shows a different set of stable varieties in each of the quality indexes. Only a few of the varieties (G2, G6, G9, G13, G18, G20, G22) have a good balance between the size and stability of all quality parameters, with a moderate compromise with the grain yield level. The assessment of the stability of the variety in terms of quality can be made according to any of the indexes used. The stability of the variety depends to a large extent on the effect of the environment, which must be considered when selecting a specific index for assessment. The most suitable for this purpose is the gluten index (GI), where the influence of genotype is the strongest, with a significant GE interaction accounting for 25% of all variation. The stability of the variety does not depend on the magnitude of the quality indexes. Stable can be both quality (G2, G6) and varieties with very low grain quality (G18, G20, G22). Stability of quality, at high levels of indexes, is associated with low grain yield and vice versa. From this point of view, combining high yield stability and grain quality at the highest possible levels is a very rare exception (G2, G9).

Keywords: Wheat, Genotype by Environment, Stability, Grain Quality


How to Cite this Article

APA 6th edition
Tsenov, N., Gubatov, T. & Yanchev, I. (2023). Environment- and Genotype-Dependent Stability in the Common Wheat Grain Quality (Triticum aestivum L.) . International Journal of Innovative Approaches in Agricultural Research, 7(1), 1-24. doi: 10.29329/ijiaar.2023.536.1

Harvard
Tsenov, N., Gubatov, T. and Yanchev, I. (2023). Environment- and Genotype-Dependent Stability in the Common Wheat Grain Quality (Triticum aestivum L.) . International Journal of Innovative Approaches in Agricultural Research, 7(1), pp. 1-24.

Chicago 16th edition
Tsenov, Nikolay, Todor Gubatov and Ivan Yanchev (2023). "Environment- and Genotype-Dependent Stability in the Common Wheat Grain Quality (Triticum aestivum L.) ". International Journal of Innovative Approaches in Agricultural Research 7 (1):1-24. doi:10.29329/ijiaar.2023.536.1.

References
  1. Alava, J., Millar, S., & Salmon, S. (2001). The determination of wheat breadmaking performance and bread dough mixing time by nir spectroscopy for high-speed mixers. Journal of Cereal Science, 33(1), 71–81. https://doi.org/10.1006/jcrs.2000.0341 [Google Scholar] [Crossref] 
  2. Alemu, G., & Gerenfes, D. (2021). Effect of genotype by environment interactions on quality traits of bread wheat in Ethiopia. Asian Journal of Plant Science and Research, 11(1), 1-9. [Google Scholar]
  3. Atanasova, D., Dochev, V., Tsenov, N., & Todorov, I. (2009). Influence of genotype and environments on quality of winter wheat varieties in Northern Bulgaria. Agricultural Science and Technology 1(4), 121-126. [Google Scholar]
  4. Atanasova, D., Tsenov, N., & Todorov, I. (2012). A brief review of a nearly half a century wheat quality breeding in Bulgaria. Genetic Diversity in Plants. Book 3, Chapter 21, pp. 414-432. [Google Scholar]
  5. Bhatta, M., Regassa, T., Rose, D.J., Baenziger, P.S., Eskridge, K.M., Santra, D.K., & Poudel, R. (2017). Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat. Journal of the Science of Food and Agriculture, 97(15), 5311–5318. https://doi.org/10.1002/jsfa.8417 [Google Scholar] [Crossref] 
  6. Bonfil, D., & Posner, E. (2012). Can bread wheat quality be determined by gluten index? Journal of Cereal Science, 56(2), 115–118. https://doi.org/10.1016/j.jcs.2012.07.003 [Google Scholar] [Crossref] 
  7. Bornhofen, E., Benin, G., Storck, L., Marchioro, V.S., Meneguzzii, C., Miliolii, A.S., & Trevizani, D.M. (2017). Environmental effect on genetic gains and its impact on bread-making quality traits in Brazilian spring wheat. Chilean Journal of Agricultural Research, 77(1), 27–34. https://doi.org/10.4067/s0718-58392017000100003 [Google Scholar] [Crossref] 
  8. Bosi, S., Negri, L., Fakaros, A., Oliveti, G., Whittaker, A., & Dinelli, G. (2022). GGE biplot analysis to explore the adaption potential of Italian common wheat genotypes. Sustainability, 14(2), 897. https://doi.org/10.3390/su14020897 [Google Scholar] [Crossref] 
  9. Branković, G., Dodig, D., Pajić, V., Kandić, V., Knežević, D., Đurić, N., & Živanović, T. (2018). Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia. Zemdirbyste-Agriculture, 105(1), 39–48. https://doi.org/10.13080/z-a.2018.105.006 [Google Scholar] [Crossref] 
  10. Chamurliyski, P., Tsenov, N., Stoeva, I., Doneva, S., & Penchev, E.  (2016). Quality of grain and flour of foreign bread wheat cultivars (Triticum aestivum L.) under the conditions of south Dobrudzha region. Agricultural Science and Technology, 8(4), 283-288. https://doi.org/10.15547/ast.2016.04.054 [Google Scholar] [Crossref] 
  11. Cheshkova, A.F., Stepochkin, P.I., Aleynikov, A.F., Grebennikova, I.G., & Ponomarenko, V.I. (2020). A comparison of statistical methods for assessing winter wheat grain yield stability. Vavilov Journal of Genetics and Breeding, 24(3), 267–275. https://doi.org/10.18699/vj20.619 [Google Scholar] [Crossref] 
  12. Dencic, S., Kobiljski, B., Mladenov, N., Hristov, N., & Pavlovic, M. (2007). Long-term breeding for bread making quality in wheat. In Wheat Production in Stressed Environments: Proceedings of the 7th International Wheat Conference, 27 November–2 December 2005, Mar del Plata, Argentina (pp. 495-501). Springer Netherlands. [Google Scholar]
  13. De Santis, M.A., Giuliani, M.M., Giuzio, L., De Vita, P., Lovegrove, A., Shewry, P.R., & Flagella, Z. (2017). Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. European Journal of Agronomy, 87, 19–29. https://doi.org/10.1016/j.eja.2017.04.003 [Google Scholar] [Crossref] 
  14. Desheva G, 2016. Effects of genotype, environment and their interaction on quality characteristics of winter bread wheat. Journal of Basic and Applied Research, 2(3), 363-372. [Google Scholar]
  15. Flores, F., Moreno, M.T., & Cubero, J. I. (1998). A comparison of univariate and multivariate methods to analyze G x E interaction. Field Crops Research, 56(3), 271–286. https://doi.org/10.1016/S0378-4290(97)00095-6 [Google Scholar] [Crossref] 
  16. Gubatov, T. & Delibaltova, V. (2020). Evaluation of wheat varieties by the stability of grain yield in multi environmental trails.  Bulgarian Journal of Agricultural Sciences, 26(2), 384-394. [Google Scholar]
  17. Herrera, J.M., Häner, L., Mascher, F., Hiltbrunner, J., Fossati, D., Brabant, C., Charles, R., & Pellet, D. (2020). Lessons from 20 years of studies of wheat genotypes in multiple environments and under contrasting production systems, Frontiers in Plant Science, 10, 1745. https://doi.org/10.3389/fpls.2019.01745 [Google Scholar] [Crossref] 
  18. Ilin, S., Jocković, B., Mirosavljević, M., Momčilović, V., Aćin, V., Živančev, D., Mikić, S., & Brbaklić, L. (2022). The performance of the genetic gain and breeding progress of historical winter wheat cultivars set in the period from 1930 to 2013 in South-eastern Europe. Zemdirbyste-Agriculture, 109(3), 219-226. https://doi.org/10.13080/z-a.2022.109.028 [Google Scholar] [Crossref] 
  19. Kang, M.S. (2020). Genotype-environment interaction and stability analyses: an update. In: Quantitative genetics, genomics and plant breeding (pp. 140–161). CABI. https://doi.org/10.1079/9781789240214.0140 [Google Scholar] [Crossref] 
  20. Karaman, M. (2020). Evaluation of yield and quality performances of some spring bread wheat (Triticum aestivum L.) genotypes under natural rainfall conditions. International Journal of Agriculture, Environment and Food Sciences, 4 (1), 19–26. https://doi.org/10.31015/jaefs.2020.1.4 [Google Scholar] [Crossref] 
  21. Kasahun, C., & Alemu, G. (2022). Evaluation of physical and chemical quality characteristics of elite bread wheat (Triticum aestivum L.) genotypes. International Journal of Nutrition and Food Sciences, 11(4), 102-109. https://doi.org/10.11648/j.ijnfs.20221104.12 [Google Scholar] [Crossref] 
  22. Khazratkulova, S., Sharma, R. C., Amanov, A., Ziyadullaev, Z., Amanov, O., Alikulov, S., Ziyaev, Z., & Muzafarova, D. (2015). Genotype × environment interaction and stability of grain yield and selected quality traits in winter wheat in Central Asia. Turkish Journal of Agriculture and Forestry, 39, 920–929. https://doi.org/10.3906/tar-1501-24 [Google Scholar] [Crossref] 
  23. Kyratzis, A. C., Pallides, A., & Katsiotis, A. (2022). Investigating stability parameters for agronomic and quality traits of durum wheat grown under Mediterranean conditions. Agronomy, 12(8), 1774. https://doi.org/10.3390/agronomy12081774  [Google Scholar] [Crossref] 
  24. Liu, S., Xu, L., Wu, Y., Simsek, S., & Rose, D.J. (2022). End-use quality of historical and modern winter wheats adapted to the Great Plains of the United States. Foods, 11(19), 2975. https://doi.org/10.3390/foods11192975 [Google Scholar] [Crossref] 
  25. Ma, M., Li, Y., Xue, C., Xiong, W., Peng, Z., Han, X., Ju, H., and He, Y. (2021). Current situation and key parameters for improving wheat quality in China. Frontiers in Plant Science, 12, 638525. https://doi.org/10.3389/fpls.2021.638525 [Google Scholar] [Crossref] 
  26. McFall, K. L., & Fowler, M. E. (2009). Overview of wheat classification and trade. Wheat science and trade, Chapter 19, 437-454. [Google Scholar]
  27. Mirosavljević, M., Momčilović, V., Živančev, D., Aćin, V., Jocković, B., Mikić, S., Takač V, & Denčić, S. (2020). Genetic improvement of grain yield and bread-making quality of winter wheat over the past 90 years under the Pannonian Plain conditions. Euphytica, 216(12). https://doi.org/10.1007/s10681-020-02724-5 [Google Scholar] [Crossref] 
  28. Mohammadi, R., Sadeghzadeh, B., Poursiahbidi, M.M., & Ahmadi, M.M. (2021). Integrating univariate and multivariate statistical models to investigate genotype × environment interaction in durum wheat. Annual Applied Biology, 178(3), 450–465. https://doi.org/10.1111/aab.12648 [Google Scholar] [Crossref] 
  29. Morgounov, A., Abugalieva, A., & Martynov, S. (2014). Effect of climate change and variety on long-term variation of grain yield and quality in winter wheat in Kazakhstan. Cereal Research Communications, 42(1), 163–172. https://doi.org/10.1556/crc.2013.0047 [Google Scholar] [Crossref] 
  30. Mut Z, Aydin N, Bayramoglu H & Özcan H, (2010). Stability of some quality traits in bread wheat (Triticum aestivum) genotypes. Journal of Environmental Biology, 31(4), 489–495. [Google Scholar]
  31. Nehe, A., Akin, B., Sanal, T., Evlice, A.K., Ünsal, R., Dinçer, N., Demir, L., Geren, H., Sevim, I., Orhan, I., Yaktubay, S., Ezici, A., Guzman, C., & Morgounov, A. (2019). Genotype x environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLOS ONE, 14(7), e0219432. https://doi.org/10.1371/journal.pone.0219432 [Google Scholar] [Crossref] 
  32. Olivoto, T, Dal’Col, L.A., da Silva, J.A.G., Marchioro, V.S., de Souza, V.Q. & Jost, E. (2019). Mean performance and stability in multi-environment trials II: Selection Based on Multiple Traits. Agronomy Journal, 111(6): 2961-2969, https://doi.org/10.2134/agronj2019.03.0221 [Google Scholar] [Crossref] 
  33. Öztürk, I. (2020). Flag Leaf in Bread Wheat (Triticum aestivum L.) Genotypes and Association with Yield and Yield Component under Rainfed. Innovative Approaches in Agricultural Research, 4(3)-328-339. https://doi.org/10.29329/ijiaar.2020.274.6 [Google Scholar] [Crossref] 
  34. Öztürk, I. (2022). Genotypes by Environment Interaction of Bread Wheat (Triticum aestivum L.) Genotypes on Yield and Quality Parameters under Rainfed Conditions. International Journal of Innovative Approaches in Agricultural Research, 6(1), 27–40. https://doi.org/10.29329/ijiaar.2022.434.3 [Google Scholar] [Crossref] 
  35. Penchev, E., Doneva, S., & Alexandrova, R. (2019). Investigation on the adaptability of a group of topical common winter wheat cultivars. International Journal of Innovative Approaches in Agricultural Research, 3(2), 169–176. https://doi.org/10.29329/ijiaar.2019.194.2 [Google Scholar] [Crossref] 
  36. Pengpeng, L., Sang, W., Xu, H., Cui, F., Han, X., Nie, Y., & Mu, P. (2022). Effects of genotype and environment on protein qualities of winter wheat in Xinjiang. Xinjiang Agricultural Sciences, 59(1), 45-54. https://doi.org/10.6048/j.issn.1001-4330.2022.01.006 [Google Scholar] [Crossref] 
  37. Pour-Aboughadareh, A., Khalili, M., Poczai, P., & Olivoto, T., (2022). Stability Indices to Deciphering the Genotype-by-Environment Interaction (GEI) Effect: An Applicable Review for Use in Plant Breeding Programs. Plants 11(3), 414. https://doi.org/10.3390/plants11030414 [Google Scholar] [Crossref] 
  38. Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., & Siddique, K.H.M. (2019). Stabilitysoft: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1), e01211. https://doi.org/10.1002/aps3.1211 [Google Scholar] [Crossref] 
  39. Shewry, P.R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537–1553. https://doi.org/10.1093/jxb/erp058 [Google Scholar] [Crossref] 
  40. Stoeva, I. (2012). Technological evaluation of new common winter wheat lines developed at Dobrudzha Agricultural Institute - General Toshevo. Agricultural Science and Technology, 4(1), 10–14. [Google Scholar]
  41. Suwarno, W.B., Aswidinnoor, S. H., & Syukur, M. (2008). PBSTAT: a web-based statistical analysis software for participatory plant breeding, Proceeding 3rd International Conference on Mathematics and Statistics, pp. 852-858. [Google Scholar]
  42. Taneva, K., Bozhanova, V., & Dragov, R. (2019). Assessment of Diversity and Association between Agronomic and Quality Traits in an Assortiment of Durum Wheat Genotypes. International Journal of Innovative Approaches in Agricultural Research, 3(3), 480–490. https://doi.org/10.29329/ijiaar.2019.206.13 [Google Scholar] [Crossref] 
  43. Tsenov, N., Atanasova, D., Chamurliiski, P., & Stoeva, I. (2013).  Influence of extreme environmental changes on grain quality of winter common wheat (Triticum aestivum L.)  Bulgarian Journal of Agricultural Science, 19(4), 685-690. [Google Scholar]
  44. Tsenov, N., Gubatov, T. & Yanchev, I. (2021). Genotype selection for grain yield and quality based on multiple traits of common wheat (Triticum aestivum L.). Cereal Research Communications, 49(1), 119-124. https://doi.org/10.1007/s42976-020-00080-7 [Google Scholar] [Crossref] 
  45. Tsenov, N., Gubatov, T., & Yanchev, I. (2022a). Comparison of statistical parameters for estimating the yield and stability of winter common wheat. Agricultural Science and Technology, 14(3), 10-25. https://doi.org/10.15547/ast.2022.03.032 [Google Scholar] [Crossref] 
  46. Tsenov, N., Gubatov, T., & Yanchev, I. (2022b). Indices for assessing the stability of wheat under the genotype x environment interaction. Bulgarian Journal of Crop Science, 59(2), 16-34. (Bg). [Google Scholar]
  47. Tsenov, N., Gubatov, T. & Yanchev, I. (2023). The impact of genotype, environment, and genotype× environment interaction on wheat grain yield and quality. Bulgarian Journal of Crop Science, 60, accepted. [Google Scholar]
  48. Vaezi, B., Pour-Aboughadareh, A., Mohammadi, R., Mehraban, A., Hossein-Pour, T., Koohkan, E., Ghasemi, S., Moradkhani, H., & Siddique, K.H.M. (2019). Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica, 215(4). https://doi.org/10.1007/s10681-019-2386-5 [Google Scholar] [Crossref] 
  49. Verma, A., Kumar, V., Kharab, A., & Singh, G. (2018). Comparative performance of parametric and non-parametric measures for analyzing G x E interactions of grain yield for dual Purpose Barley genotypes. Electronic Journal of Plant Breeding, 9(3), 846. https://doi.org/10.5958/0975-928x.2018.00105.9 [Google Scholar] [Crossref] 
  50. Vida, G., Szunics, L., Veisz, O., & Cséplő, M. (2022). Breeding for improved gluten strength and yellow pigment content in winter durum wheat. Bulgarian Journal of Crop Science, 59(6) 16-3. [Google Scholar]
  51. Yan, W., & Hunt, L. (2001). Interpretation of genotype × environment interaction for winter wheat yield in Ontario. Crop Science, 41(1), 19–25. https://doi.org/10.2135/cropsci2001.41119x [Google Scholar] [Crossref] 
  52. Yan, W., Kang, M.S., Ma, B., Woods, S., & Cornelius, P.L. (2007). GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Science, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374 [Google Scholar] [Crossref] 
  53. Zhang, S., Shuliang, L., Li Shen, Shujuan, C., Li, H., & Aiping, L. (2022). Application of near-infrared spectroscopy for the non-destructive analysis of wheat flour: A review. Current Research in Food Science 5, 1305–1312. https://doi.org/10.1016/j.crfs.2022.08.006 [Google Scholar] [Crossref]