International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(1) 148-156

The Role of Exogenous Glutamine as a Regulator of Gene Expression under Stress Conditions in Plants

Ayse Gül Nasırcılar & Kamile Ulukapı

pp. 148 - 156   |  DOI: https://doi.org/10.29329/ijiaar.2023.536.11

Published online: March 29, 2023  |   Number of Views: 29  |  Number of Download: 175


Abstract

Amino acids, which are necessary for the synthesis of proteins as well as some other nitrogenous components in organisms, are effective for the synthesis and in the activities of some enzymes and of gene expression. Stress tolerance is provided by different mechanisms, especially with the accumulation of some specific amino acids under stress conditions in plants. Although the role of some amino acids such as proline under stress conditions has been demonstrated by many studies, the mission of some other amino acids under stress conditions has not yet been fully elucidated. Like other amino acids in organisms, glutamine is involved in the synthesis of nitrogenous compounds such as amino acids and nucleotides. The functions of glutamine in plants, which are known to be involved in signal transmission in humans, yeast, and bacteria, are not yet fully known. For this reason, various studies conducted in recent years have focused on elucidating the role of glutamine in signal transduction pathways under stress conditions. It was revealed by transcriptome analyses that exogenous glutamine applications support growth and development in some plants by inducing the expression of several genes involved in metabolism, transport, signal transduction, and stress response. It was identified that these genes synthesize transcription factors that activate the genes involved in nitrogen metabolism or stress response. The induction of these transcription factor genes by glutamine supports the idea that it functions as a signaling molecule regulating gene expression in plants. In this review, research studies investigating the role of glutamine, especially under stress conditions, were examined, to create a resource for researchers of future studies on this topic.

Keywords: Abiotic Stress, Exogenous application, Glutamine, Plant, Signal Transduction


How to Cite this Article

APA 6th edition
Nasircilar, A.G. & Ulukapi, K. (2023). The Role of Exogenous Glutamine as a Regulator of Gene Expression under Stress Conditions in Plants . International Journal of Innovative Approaches in Agricultural Research, 7(1), 148-156. doi: 10.29329/ijiaar.2023.536.11

Harvard
Nasircilar, A. and Ulukapi, K. (2023). The Role of Exogenous Glutamine as a Regulator of Gene Expression under Stress Conditions in Plants . International Journal of Innovative Approaches in Agricultural Research, 7(1), pp. 148-156.

Chicago 16th edition
Nasircilar, Ayse Gul and Kamile Ulukapi (2023). "The Role of Exogenous Glutamine as a Regulator of Gene Expression under Stress Conditions in Plants ". International Journal of Innovative Approaches in Agricultural Research 7 (1):148-156. doi:10.29329/ijiaar.2023.536.11.

References
  1. Amin, A. A., Gharib, F. A., El-Awadi, M., & Rashad, E. S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129(3), 353-360. [Google Scholar]
  2. Batista-Silva, W., Heinemann, B., Rugen, N., Nunes‐Nesi, A., Araújo, W. L., Braun, H. P., & Hildebrandt, T. M. (2019). The role of amino acid metabolism during abiotic stress release. Plant, Cell & Environment, 42(5), 1630-1644. [Google Scholar]
  3. Brasse‐Lagnel, C., Lavoinne, A., & Husson, A. (2009). Control of mammalian gene expression by amino acids, especially glutamine. The FEBS journal, 276(7), 1826-1844. [Google Scholar]
  4. Brugiere, N., Dubois, F., Limami, A.M., Lelandais, M., Roux, Y., Sangwan, ` R.S., Hirel, B., 1999. Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11, 1995–2012 [Google Scholar]
  5. Coruzzi, G.M. (2003). Primary N-assimilation into amino acids in Arabidopsis. In The Arabidopsis Book, C.R. Somerville and E.M. Meyerowitz, eds (Rockville, MD: American Society of Plant Biologists) [Google Scholar]
  6. Çavuşoğlu, K., Togay D., & Çavuşoğlu, D. (2020). Physiological and cytogenetical effects of glutamine treatment in onion (Allium cepa L.) seeds exposed to salt stress. Bulg J Crop Sci, 57(1), 60-65. [Google Scholar]
  7. Dellero, Y. (2020). Manipulating amino acid metabolism to improve crop nitrogen use efficiency for a sustainable agriculture. Frontiers in Plant Science, 11, 602548. [Google Scholar]
  8. El-Zohiri S.S.M., Asfour Y.M.(2009) Effect of some organic compounds on growth and productivity of some potato cultivars. Annals of Agric Sci Moshtohor, 47(3):403 -415. [Google Scholar]
  9. Forsum, O., Svennerstam, H., Ganeteg, U., & Näsholm, T. (2008). Capacities and constraints of amino acid utilization in Arabidopsis. New Phytologist, 179(4), 1058-1069. [Google Scholar]
  10. Haghighi, M., Saadat, S., & Abbey, L. (2020). Effect of exogenous amino acids application on growth and nutritional value of cabbage under drought stress. Scientia Horticulturae, 272, 109561. [Google Scholar]
  11. Heinemann, B., & Hildebrandt, T. M. (2021). The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany, 72(13), 4634-4645. [Google Scholar]
  12. Hildebrandt, T. M., Nesi, A. N., Araújo, W. L., & Braun, H. P. (2015). Amino acid catabolism in plants. Molecular Plant, 8(11), 1563-1579. [Google Scholar]
  13. Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., Takabe, T., & Takabe, T. (2000). Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase, Plant Mol. Biol. 43, 103–111. [Google Scholar]
  14. Husin, N., Jalil, M., Othman, R.Y., & Khalid, N. (2014). Enhancement of regeneration efficiency in banana (Musa acuminata cv. Berangan) by using proline and glutamine. Sci. Hortic. (Amst.), 168, 33-37. [Google Scholar]
  15. Kamada-Nobusada, T., Makita, N., Kojima, M., & Sakakibara, H. (2013). Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. Plant and Cell Physiology, 54(11), 1881-1893. [Google Scholar]
  16. Kan, C. C., Chung, T. Y., Juo, Y. A., & Hsieh, M. H. (2015). Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. BMC Genomics, 16(1), 1-15. [Google Scholar]
  17. Kan, C. C., Chung, T. Y., Wu, H. Y., Juo, Y. A., & Hsieh, M. H. (2017). Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics, 18(1), 1-17. [Google Scholar]
  18. Khan, A. S., Ahmad, B., Jaskani, M. J., Ahmad, R., & Malik, A. U. (2012). Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physicochemical properties of grapes. Int. J. Agric. Biol, 14(3), 383-388. [Google Scholar]
  19. Kim, J. K., Bamba, T., Harada, K., Fukusaki, E., & Kobayashi, A. (2007). Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany, 58(3), 415-424. [Google Scholar]
  20. Kim, T. H., Kim, E. C., Kim, S. W., Lee, H. S., & Choi, D. W. (2010). Exogenous glutamate inhibits the root growth and increases the glutamine content in Arabidopsis thaliana. Journal of Plant Biology, 53, 45-51. [Google Scholar]
  21. Liu, G., Ji, Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J., & Wei, Y. (2010). Amino acid homeostasis modulates salicylic acid–associated redox status and defense responses in Arabidopsis. The Plant Cell, 22(11), 3845-3863. [Google Scholar]
  22. Lu, B., Yuan, Y., Zhang, C., Ou, J., Zhou, W., & Lin, Q. (2005). Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots, Plant Sci. 169, 295–302. [Google Scholar]
  23. Ma, N. L., Rahmat, Z., & Lam, S. S. (2013). A review of the “omics” approach to biomarkers of oxidative stress in Oryza sativa. International Journal of Molecular Sciences, 14(4), 7515-7541. [Google Scholar]
  24. Miranda, R. D. S., Alvarez-Pizarro, J. C., Costa, J. H., Paula, S. D. O., Prisco, J. T., & Gomes-Filho, E. (2017). Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signaling & Behavior, 12(8), 522-36. [Google Scholar]
  25. Muthuramalingam, P., Jeyasri, R., Selvaraj, A., Pandian, S. K., & Ramesh, M. (2020). Integrated transcriptomic and metabolomic analyses of glutamine metabolism genes unveil key players in Oryza sativa (L.) to ameliorate the unique and combined abiotic stress tolerance. International Journal of Biological Macromolecules, 164, 222-231. [Google Scholar]
  26. Nam, M. H., Bang, E., Kwon, T. Y., Kim, Y., Kim, E. H., Cho, K., ... & Yoon, I. S. (2015). Metabolite profiling of diverse rice germplasm and identification of conserved metabolic markers of rice roots in response to long-term mild salinity stress. International Journal of Molecular Sciences, 16(9), 21959-21974. [Google Scholar]
  27. Noroozlo, Y. A., Souri, M. K., & Delshad, M. (2019). Stimulation effects of foliar applied glycine and glutamine amino acids on lettuce growth. Open Agriculture, 4(1), 164-172. [Google Scholar]
  28. Patade, V. Y., Lokhande, V. H., & Suprasanna, P. (2014). Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. Sugar Tech, 16(1), 22-29. [Google Scholar]
  29. Pawar, B., Prashant, K. A. L. E., Bahurupe, J., Jadhav, A., Anil, K. A. L. E., & Pawar, S. (2015). Proline and glutamine improve in vitro callus induction and subsequent shooting in rice. Rice Science, 22(6), 283-289. [Google Scholar]
  30. Rai, V. K. (2002). Role of amino acids in plant responses to stresses. Biologia Plantarum, 45(4), 481-487. [Google Scholar]
  31. Rashad, E. S. M., El-Abagg, H. M., & Amin, A. A. (2003). Physiological effects of some bioregulators on growth and productivity of two broad bean cultivars. Egypt J Appl Sci, 18, 132-149. [Google Scholar]
  32. Sh Sadak, M., Abdelhamid, M. T., & Schmidhalter, U. (2015). Effect of foliar application of aminoacids on plant yield and some physiological parameters in bean plants irrigated with seawater. Acta Biológica Colombiana, 20(1), 141-152. [Google Scholar]
  33. Singh, K.K., & Ghosh S. (2013). Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions, Plant Cell Rep. 32, 183–193. [Google Scholar]
  34. Tabuchi, M., Abiko, T., & Yamaya, T. (2007). Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany, 58(9), 2319-2327. [Google Scholar]
  35. Teixeira, J., & Pereira, S. (2007). High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environmental and Experimental Botany, 60(1), 121-126. [Google Scholar]
  36. Vasudevan, A., Selvaraj, N., Ganapathi, A., Kasthurirengan, S., Ramesh Anbazhagan, V., & Manickavasagam, M. (2004). Glutamine: a suitable nitrogen source for enhanced shoot multiplication in Cucumis sativus L. Biologia Plantarum, 48, 125-128. [Google Scholar]
  37. Woods, D.R., & Reid S.J. (1993). Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups, Fems Microbiol. Rev. 11, 273–283. [Google Scholar]
  38. Xiang, Y., Huang, Y., & Xiong, L. (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiology, 144(3), 1416-1428. [Google Scholar]
  39. Xiong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. The Plant Cell, 15(3), 745-759. [Google Scholar]
  40. Yan, S., Tang, Z., Su, W., & Sun, W. (2005). Proteomic analysis of salt stress-responsive proteins in rice root, Proteomics 5, 235–244. [Google Scholar]