- Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider J. L., & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific reports, 8(1): 1-15. [Google Scholar]
- Alves, A.A., & Setter, T.L. (2004). Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion and delayed development. Annals of Botany, 94: 605–613. [Google Scholar]
- Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism oxidative and signal transduction. Annual Review of Plant Molecular Biology, 55:373–399. [Google Scholar]
- Arıcan, E., & Demirbaş, S. (2022). Effects of Sequential Hydrogen Peroxide Applications on Salt Stress Tolerance in Bread Wheat Varieties. Journal of Agricultural Sciences, 43-43. [Google Scholar]
- Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall,G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K., Basso, B., Anothai, J., Biernath, C., Challinor, A.J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A., Izaurralde, R.C., Jabloun, M., Jones, C.D., Kersebaum, K.C., Koehler, A. K.,Müller, C., Naresh Kumar, S., Nendel, C., O'Leary, G., Olesen, J.E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ruane, A.C., Semenov, M.A.,Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P.J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z., and Zhu, Y., (2015) Rising temperatures reduce global wheat production. Nature climate change, 5(2), 143-147. [Google Scholar]
- Bayoumi, T.Y., Eid, M.H., & Metwali, E.M. (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. African Journal of Biotechnology, 7: 2341–2352. [Google Scholar]
- Dhakal, A. (2021). Effect of drought stress and management in wheat-A review. Food & Agribusiness Management (FABM), 2(2): 62-66. [Google Scholar]
- Diab, A. A., Teulat-Merah, B., This, D., Ozturk, N. Z., Benscher, D., & Sorrells, M. E. (2004). Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetics, 109(7): 1417-1425. [Google Scholar]
- Faisal, S., Mujtaba, S. M., Khan, M. A., & Mahboob, W. A. J. I. D. (2017). Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pakistan Journal of Botany, 49(2): 445-452. [Google Scholar]
- Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht. [Google Scholar]
- Hasanuzzaman, M., Al Mahmud, J., Anee, T. I., Nahar, K., and Islam, M. T. (2018). Drought stress tolerance in wheat: omics approaches in understanding and enhancing antioxidant defense. Abiotic stress-mediated sensing and signaling in plants: an omics perspective (pp. 267-307). Springer, Singapore. [Google Scholar]
- Kumar, D., Yusuf, M. A., Singh, P., Sardar, M., & Sarin, N. B. (2014). Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol. 4(8): 1108. [Google Scholar]
- Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J. (2019). The role of the plant antioxidant system in drought tolerance. Antioxidants, 8(4): 94. [Google Scholar]
- Li, C., Li, L., Reynolds, M. P., Wang, J., Chang, X., Mao, X., & Jing, R. (2021). Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. Journal of Experimental Botany, 72(14): 5117-5133. [Google Scholar]
- Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant physiology, 51(5): 914-916. [Google Scholar]
- Peryea, F. J., & Kammereck, R. (1997). Phosphate-enhanced movement of arsenic out of lead arsenate-contaminated topsoil and through uncontaminated subsoil. Water, Air, and Soil Pollution, 93(1): 243-254. [Google Scholar]
- Sharma, V., Kumar, A., Chaudhary, A., Mishra, A., Rawat, S., Shami, V., & Kaushik, P. (2022). Response of Wheat Genotypes to Drought Stress Stimulated by PEG. Stresses, 2(1), 26-51. [Google Scholar]
- Siddique, M. R. B., Hamid, A. I. M. S., & Islam, M. S. (2000). Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica, 41. [Google Scholar]
- Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant physiology, 53(2): 258-260. [Google Scholar]
- Tewari, R. K., Kumar, P., & Sharma, P. N. (2006). Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta, 223(6): 1145-1153. [Google Scholar]
- Wilson, P. J., Thompson, K. E. N., & Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. The New Phytologist, 143(1): 155-162. [Google Scholar]
|