International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2022, Vol. 6(4) 401-409

Determination of ATP1A1 Gene Polymorphism in the Turkish Holstein Cattle

Sertaç Atalay & Süleyman Kök

pp. 401 - 409   |  DOI:

Published online: December 31, 2022  |   Number of Views: 20  |  Number of Download: 57


Heat stress is an important factor negatively affecting the productive characteristics, immune response and reproductive performance of livestock. Sustainable livestock systems that can tolerate the impact of increasing environmental temperature are very important to ensure global food security. Oxidative stress triggered by heat stress influences plasma Na and K levels in cattle. The ATP1A1 gene encodes the α1 isoform that forms the transmembrane subunit of the NA,K ATPase enzyme. The α subunit plays a major role in maintaining sodium-potassium homeostasis in all animal cells. The aim of the study was to determine ATP1A1 gene polymorphisms in Turkish Holstein cattle. The target regions (intron 17 and exon 18) were amplified and sequenced in 50 Turkish Holstein cattle. Multiple alignments revealed three SNP. rs109703332 A>G and rs110455455 C>T were detected in intron 17 and a synonymous SNP rs110256520 C>A in exon 18. It was observed that the three SNPs were in strong linkage disequilibrium (LD) with each other and therefore had the same genotype and allele frequencies. The three SNPs were found to be highly linked in one haplotype block. This haplotype block consisted of 2 haplotypes (CCA and ATG). The frequency of the CCA haplotype was 0.860 and the ATG was 0.140. Individuals of Holstein cattle tolerate heat stress to different levels. This difference between individuals may be due to variations in the genes involved in the adaptation mechanism. Therefore, it is important to identify polymorphisms in genes involved in the heat stress tolerance mechanism. In conclusion, in this study, the three SNPs and the two haplotypes were determined on the ATP1A1 gene in Turkish Holsteins cattle.

Keywords: ATP1A1, Heat Stress, Cattle, Polymorphism

How to Cite this Article

APA 6th edition
Atalay, S. & Kok, S. (2022). Determination of ATP1A1 Gene Polymorphism in the Turkish Holstein Cattle . International Journal of Innovative Approaches in Agricultural Research, 6(4), 401-409. doi: 10.29329/ijiaar.2022.506.10

Atalay, S. and Kok, S. (2022). Determination of ATP1A1 Gene Polymorphism in the Turkish Holstein Cattle . International Journal of Innovative Approaches in Agricultural Research, 6(4), pp. 401-409.

Chicago 16th edition
Atalay, Sertac and Suleyman Kok (2022). "Determination of ATP1A1 Gene Polymorphism in the Turkish Holstein Cattle ". International Journal of Innovative Approaches in Agricultural Research 6 (4):401-409. doi:10.29329/ijiaar.2022.506.10.

  1. AL-Luhaibe, K. A. A. A., & Al-Azzawi, S. H. J. (2020). Genetic polymorphism in HSP90AA1 gene and associated with the heat tolerance coefficient in Holstein cows at south of Iraq. Plant Archives, 20(1), 169-175. [Google Scholar]
  2. Altan, Ö., Pabuçcuoğlu, A., Altan, A., Konyalioğlu, S., & Bayraktar, H. (2003). Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. British poultry science, 44(4), 545-550. [Google Scholar]
  3. Banerjee, D., & Ashutosh. (2011). Circadian changes in physiological responses and blood ionized sodium and potassium concentrations under thermal exposure in Tharparkar and Karan Fries heifers. Biological Rhythm Research, 42(2), 131-139. [Google Scholar]
  4. Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. [Google Scholar]
  5. Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of dairy science, 85(9), 2173-2179. [Google Scholar]
  6. Blanco, G., & Mercer, R. W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology-Renal Physiology, 275(5), F633-F650. [Google Scholar]
  7. Bublitz, M., Morth, J. P., & Nissen, P. (2011). P-type ATPases at a glance. Journal of Cell Science, 124(15), 2515-2519. [Google Scholar]
  8. Chen, Y., Cunningham, F., Rios, D., McLaren, W. M., Smith, J., Pritchard, B., . . . Marin-Garcia, P. (2010). Ensembl variation resources. BMC genomics, 11(1), 1-16. [Google Scholar]
  9. Collier, R., Stiening, C., Pollard, B., VanBaale, M., Baumgard, L., Gentry, P., & Coussens, P. (2006). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science, 84(suppl_13), E1-E13. [Google Scholar]
  10. Correa-Calderón, A., Avendaño-Reyes, L., López-Baca, M., & Macías-Cruz, U. (2022). Heat stress in dairy cattle with emphasis on milk production and feed and water intake habits. Review. Revista mexicana de ciencias pecuarias, 13(2), 488-509. [Google Scholar]
  11. De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. [Google Scholar]
  12. Elayadeth-Meethal, M., Thazhathu Veettil, A., Asaf, M., Pramod, S., Maloney, S. K., Martin, G. B., . . . Kuruniyan, M. S. (2021). Comparative expression profiling and sequence characterization of ATP1A1 gene associated with heat tolerance in tropically adapted cattle. Animals, 11(8), 2368. [Google Scholar]
  13. Gantner, V., Bobic, T., Gantner, R., Gregic, M., Kuterovac, K., Novakovic, J., & Potocnik, K. (2017). Differences in response to heat stress due to production level and breed of dairy cows. International Journal of Biometeorology, 61(9), 1675-1685. [Google Scholar]
  14. Gara, A. B., Jemmali, B., Hammami, H., Rouissi, H., Bouallegue, M., & Rekik, B. (2012). Milk production of Holsteins under Mediterranean conditions: case of the Tunisian population. [Google Scholar]
  15. Geering, K. (2008). Functional roles of Na, K-ATPase subunits. Current opinion in nephrology and hypertension, 17(5), 526-532. [Google Scholar]
  16. Graffelman, J., & Graffelman, M. J. (2022). Package ‘HardyWeinberg’. [Google Scholar]
  17. Hooper, H. B., Titto, C. G., Gonella-Diaza, A. M., Henrique, F. L., Pulido-Rodríguez, L. F., Longo, A. L. S., . . . Binelli, M. (2019). Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions. International Journal of Biometeorology, 63(11), 1475-1486. [Google Scholar]
  18. Imran, S., Khan, M. S., & Qureshi, Z. I. (2021). Genetic characterization of Cholistani breed of cattle for ATP1A1 gene and its association to heat tolerance traits. Pakistan Journal of Agricultural Sciences, 58(1). [Google Scholar]
  19. Kashyap, N., Kumar, P., Deshmukh, B., Bhat, S., Kumar, A., Chauhan, A., . . . Sharma, D. (2015). Association of ATP1A1 gene polymorphism with thermotolerance in Tharparkar and Vrindavani cattle. Veterinary World, 8(7), 892. [Google Scholar]
  20. Kaushik, R., Goel, A., & Rout, P. (2019). Differential expression and characterization of ATP1A1 exon17 gene by high resolution melting analysis and RT-PCR in Indian goats. Molecular Biology Reports, 46(5), 5273-5286. [Google Scholar]
  21. Lingrel, J. B., Orlowski, J., Shull, M. M., & Price, E. M. (1990). Molecular genetics of Na, K-ATPase. Progress in nucleic acid research and molecular biology, 38, 37-89. [Google Scholar]
  22. Liu, Y., Li, D., Li, H., Zhou, X., & Wang, G. (2011). A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Molecular Biology Reports, 38(1), 83-88. [Google Scholar]
  23. Liu, Y., Xu, C., Gao, T., & Sun, Y. (2012). Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle. Genet. Mol. Res, 11(1), 651-660. [Google Scholar]
  24. Palmgren, M. G., & Nissen, P. (2011). P-type ATPases. Annual review of biophysics, 40, 243-266. [Google Scholar]
  25. Pierre, S. V., & Xie, Z. (2006). The Na, K-ATPase receptor complex. Cell biochemistry and biophysics, 46(3), 303-315. [Google Scholar]
  26. Pires, B. V., Stafuzza, N. B., de Freitas, L. A., Mercadante, M. E. Z., Ramos, E. S., & Paz, C. C. P. (2021). Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. Journal of Thermal Biology, 99, 102998. [Google Scholar]
  27. Ramendra, D., Gupta, I., Archana, V., Chaudhari, M., Lalrengpuii, S., & Sohanvir, S. (2018). Identification of SNPs in ATP1A1 gene and their association with heat tolerance in Sahiwal and Karan Fries (Bos taurus× Bos indicus) cattle under tropical climatic condition. Indian Journal of Dairy Science, 71(4), 409-415. [Google Scholar]
  28. Ramendra, D., Gupta, I., Verma, A., Singh, A., Chaudhari, M. V., Sailo, L., . . . Goswami, J. (2015). Genetic polymorphisms in ATP1A1 gene and their association with heat tolerance in Jersey crossbred cows. Indian J. Dairy Sci, 68(1), 50-54. [Google Scholar]
  29. Ramendra, D., Gupta, I. D., Verma, A., Singh, S., Chaudhari, M. V., Sailo, L., . . . Kumar, R. (2017). Single nucleotide polymorphisms in ATP1A1 gene and their association with thermotolerance traits in Sahiwal and Karan Fries cattle. Indian Journal of Animal Research, 51(1), 70-74. [Google Scholar]
  30. Rivera, H. E., Aichelman, H. E., Fifer, J. E., Kriefall, N. G., Wuitchik, D. M., Wuitchik, S. J., & Davies, S. W. (2021). A framework for understanding gene expression plasticity and its influence on stress tolerance. Molecular ecology, 30(6), 1381-1397. [Google Scholar]
  31. Sejian, V., Maurya, V. P., & Naqvi, S. M. (2010). Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment. International Journal of Biometeorology, 54(6), 653-661. [Google Scholar]
  32. Stachowicz, K., Sargolzaei, M., Miglior, F., & Schenkel, F. (2011). Rates of inbreeding and genetic diversity in Canadian Holstein and Jersey cattle. Journal of dairy science, 94(10), 5160-5175. [Google Scholar]
  33. Vasconcelos, J. L. M., Demétrio, D., Santos, R., Chiari, J., Rodrigues, C. A., & Sá Filho, O. (2006). Factors potentially affecting fertility of lactating dairy cow recipients. Theriogenology, 65(1), 192-200. [Google Scholar]
  34. Wankar, A. K., Singh, G., & Yadav, B. (2014). Thermoregulatory and adaptive responses of adult buffaloes (Bubalus bubalis) during hyperthermia: Physiological, behavioral, and metabolic approach. Vet World, 7(10), 825-830. [Google Scholar]
  35. Yang, Z., Lian, Z., Liu, G., Deng, M., Sun, B., Guo, Y., . . . Li, Y. (2021). Identification of genetic markers associated with milk production traits in Chinese Holstein cattle based on post genome-wide association studies. Animal Biotechnology, 32(1), 67-76. [Google Scholar]