- AL-Luhaibe, K. A. A. A., & Al-Azzawi, S. H. J. (2020). Genetic polymorphism in HSP90AA1 gene and associated with the heat tolerance coefficient in Holstein cows at south of Iraq. Plant Archives, 20(1), 169-175. [Google Scholar]
- Altan, Ö., Pabuçcuoğlu, A., Altan, A., Konyalioğlu, S., & Bayraktar, H. (2003). Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. British poultry science, 44(4), 545-550. [Google Scholar]
- Banerjee, D., & Ashutosh. (2011). Circadian changes in physiological responses and blood ionized sodium and potassium concentrations under thermal exposure in Tharparkar and Karan Fries heifers. Biological Rhythm Research, 42(2), 131-139. [Google Scholar]
- Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. [Google Scholar]
- Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of dairy science, 85(9), 2173-2179. [Google Scholar]
- Blanco, G., & Mercer, R. W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology-Renal Physiology, 275(5), F633-F650. [Google Scholar]
- Bublitz, M., Morth, J. P., & Nissen, P. (2011). P-type ATPases at a glance. Journal of Cell Science, 124(15), 2515-2519. [Google Scholar]
- Chen, Y., Cunningham, F., Rios, D., McLaren, W. M., Smith, J., Pritchard, B., . . . Marin-Garcia, P. (2010). Ensembl variation resources. BMC genomics, 11(1), 1-16. [Google Scholar]
- Collier, R., Stiening, C., Pollard, B., VanBaale, M., Baumgard, L., Gentry, P., & Coussens, P. (2006). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science, 84(suppl_13), E1-E13. [Google Scholar]
- Correa-Calderón, A., Avendaño-Reyes, L., López-Baca, M., & Macías-Cruz, U. (2022). Heat stress in dairy cattle with emphasis on milk production and feed and water intake habits. Review. Revista mexicana de ciencias pecuarias, 13(2), 488-509. [Google Scholar]
- De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. [Google Scholar]
- Elayadeth-Meethal, M., Thazhathu Veettil, A., Asaf, M., Pramod, S., Maloney, S. K., Martin, G. B., . . . Kuruniyan, M. S. (2021). Comparative expression profiling and sequence characterization of ATP1A1 gene associated with heat tolerance in tropically adapted cattle. Animals, 11(8), 2368. [Google Scholar]
- Gantner, V., Bobic, T., Gantner, R., Gregic, M., Kuterovac, K., Novakovic, J., & Potocnik, K. (2017). Differences in response to heat stress due to production level and breed of dairy cows. International Journal of Biometeorology, 61(9), 1675-1685. [Google Scholar]
- Gara, A. B., Jemmali, B., Hammami, H., Rouissi, H., Bouallegue, M., & Rekik, B. (2012). Milk production of Holsteins under Mediterranean conditions: case of the Tunisian population. [Google Scholar]
- Geering, K. (2008). Functional roles of Na, K-ATPase subunits. Current opinion in nephrology and hypertension, 17(5), 526-532. [Google Scholar]
- Graffelman, J., & Graffelman, M. J. (2022). Package ‘HardyWeinberg’. [Google Scholar]
- Hooper, H. B., Titto, C. G., Gonella-Diaza, A. M., Henrique, F. L., Pulido-Rodríguez, L. F., Longo, A. L. S., . . . Binelli, M. (2019). Heat loss efficiency and HSPs gene expression of Nellore cows in tropical climate conditions. International Journal of Biometeorology, 63(11), 1475-1486. [Google Scholar]
- Imran, S., Khan, M. S., & Qureshi, Z. I. (2021). Genetic characterization of Cholistani breed of cattle for ATP1A1 gene and its association to heat tolerance traits. Pakistan Journal of Agricultural Sciences, 58(1). [Google Scholar]
- Kashyap, N., Kumar, P., Deshmukh, B., Bhat, S., Kumar, A., Chauhan, A., . . . Sharma, D. (2015). Association of ATP1A1 gene polymorphism with thermotolerance in Tharparkar and Vrindavani cattle. Veterinary World, 8(7), 892. [Google Scholar]
- Kaushik, R., Goel, A., & Rout, P. (2019). Differential expression and characterization of ATP1A1 exon17 gene by high resolution melting analysis and RT-PCR in Indian goats. Molecular Biology Reports, 46(5), 5273-5286. [Google Scholar]
- Lingrel, J. B., Orlowski, J., Shull, M. M., & Price, E. M. (1990). Molecular genetics of Na, K-ATPase. Progress in nucleic acid research and molecular biology, 38, 37-89. [Google Scholar]
- Liu, Y., Li, D., Li, H., Zhou, X., & Wang, G. (2011). A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Molecular Biology Reports, 38(1), 83-88. [Google Scholar]
- Liu, Y., Xu, C., Gao, T., & Sun, Y. (2012). Polymorphisms of the ATP1A1 gene associated with mastitis in dairy cattle. Genet. Mol. Res, 11(1), 651-660. [Google Scholar]
- Palmgren, M. G., & Nissen, P. (2011). P-type ATPases. Annual review of biophysics, 40, 243-266. [Google Scholar]
- Pierre, S. V., & Xie, Z. (2006). The Na, K-ATPase receptor complex. Cell biochemistry and biophysics, 46(3), 303-315. [Google Scholar]
- Pires, B. V., Stafuzza, N. B., de Freitas, L. A., Mercadante, M. E. Z., Ramos, E. S., & Paz, C. C. P. (2021). Expression of candidate genes for residual feed intake in tropically adapted Bos taurus and Bos indicus bulls under thermoneutral and heat stress environmental conditions. Journal of Thermal Biology, 99, 102998. [Google Scholar]
- Ramendra, D., Gupta, I., Archana, V., Chaudhari, M., Lalrengpuii, S., & Sohanvir, S. (2018). Identification of SNPs in ATP1A1 gene and their association with heat tolerance in Sahiwal and Karan Fries (Bos taurus× Bos indicus) cattle under tropical climatic condition. Indian Journal of Dairy Science, 71(4), 409-415. [Google Scholar]
- Ramendra, D., Gupta, I., Verma, A., Singh, A., Chaudhari, M. V., Sailo, L., . . . Goswami, J. (2015). Genetic polymorphisms in ATP1A1 gene and their association with heat tolerance in Jersey crossbred cows. Indian J. Dairy Sci, 68(1), 50-54. [Google Scholar]
- Ramendra, D., Gupta, I. D., Verma, A., Singh, S., Chaudhari, M. V., Sailo, L., . . . Kumar, R. (2017). Single nucleotide polymorphisms in ATP1A1 gene and their association with thermotolerance traits in Sahiwal and Karan Fries cattle. Indian Journal of Animal Research, 51(1), 70-74. [Google Scholar]
- Rivera, H. E., Aichelman, H. E., Fifer, J. E., Kriefall, N. G., Wuitchik, D. M., Wuitchik, S. J., & Davies, S. W. (2021). A framework for understanding gene expression plasticity and its influence on stress tolerance. Molecular ecology, 30(6), 1381-1397. [Google Scholar]
- Sejian, V., Maurya, V. P., & Naqvi, S. M. (2010). Adaptive capability as indicated by endocrine and biochemical responses of Malpura ewes subjected to combined stresses (thermal and nutritional) in a semi-arid tropical environment. International Journal of Biometeorology, 54(6), 653-661. [Google Scholar]
- Stachowicz, K., Sargolzaei, M., Miglior, F., & Schenkel, F. (2011). Rates of inbreeding and genetic diversity in Canadian Holstein and Jersey cattle. Journal of dairy science, 94(10), 5160-5175. [Google Scholar]
- Vasconcelos, J. L. M., Demétrio, D., Santos, R., Chiari, J., Rodrigues, C. A., & Sá Filho, O. (2006). Factors potentially affecting fertility of lactating dairy cow recipients. Theriogenology, 65(1), 192-200. [Google Scholar]
- Wankar, A. K., Singh, G., & Yadav, B. (2014). Thermoregulatory and adaptive responses of adult buffaloes (Bubalus bubalis) during hyperthermia: Physiological, behavioral, and metabolic approach. Vet World, 7(10), 825-830. [Google Scholar]
- Yang, Z., Lian, Z., Liu, G., Deng, M., Sun, B., Guo, Y., . . . Li, Y. (2021). Identification of genetic markers associated with milk production traits in Chinese Holstein cattle based on post genome-wide association studies. Animal Biotechnology, 32(1), 67-76. [Google Scholar]
|