International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2022, Vol. 6(4) 439-463

Bioactivity of Aronia Products, and The Promising Use of Aronia in Dairy Industry

İrem Uzunsoy

pp. 439 - 463   |  DOI:

Published online: December 31, 2022  |   Number of Views: 26  |  Number of Download: 63


In recent years, foods are not only valued in terms of taste and nutritional value, but also preferred in terms of post-consumption health effects. In particular, the trend towards functional foods that offer health benefits beyond their nutritional value to consumers has increased. Dairy products have a very important place among functional foods, and fruit-added dairy products like fermented milk, kefir and yogurt etc. lead the way due to the consumption preferences. Aronia (Aronia melanocarpa) is a forest fruit originating from North America, but it is grown in many parts of Europe lately. The fruit is very rich in proanthocyanins, anthocyanins, procyanidin, phenolic acids, flavonols and flavanones. It is known as the fruit with the highest antioxidant activity, and shows antidiabetic, anti-inflammatory, antiviral, antibacterial, hypotensive, cardioprotective, hepatoprotective and anticarcinogenic properties. The fruit is mostly used as ingredient in wine, marmalade, fruit juice, tea, extract and as dietary supplement or food colorant. The health-promoting effects of aronia due to its bioactivity are enhanced with the functional dairy products, and lately aronia-added yogurt and kefir are industrially manufactured and marketed for dairy consumers. This review focuses on the health effects of aronia and the promising use of the fruit in dairy products.

Keywords: Aronia, Bioactivity, Antioxidant, Yogurt, Kefir

How to Cite this Article

APA 6th edition
Uzunsoy, I. (2022). Bioactivity of Aronia Products, and The Promising Use of Aronia in Dairy Industry . International Journal of Innovative Approaches in Agricultural Research, 6(4), 439-463. doi: 10.29329/ijiaar.2022.506.14

Uzunsoy, I. (2022). Bioactivity of Aronia Products, and The Promising Use of Aronia in Dairy Industry . International Journal of Innovative Approaches in Agricultural Research, 6(4), pp. 439-463.

Chicago 16th edition
Uzunsoy, Irem (2022). "Bioactivity of Aronia Products, and The Promising Use of Aronia in Dairy Industry ". International Journal of Innovative Approaches in Agricultural Research 6 (4):439-463. doi:10.29329/ijiaar.2022.506.14.

  1. Ali, M. S., Lee, E. B., Lee, S. J., Lee, S. P., Boby, N., Suk, K., Birhanu, B. T., & Park, S. C. (2021). Aronia melanocarpa extract fermented by Lactobacillus plantarum EJ2014 modulates immune response in mice. Antioxidants, 10(8), 1276.  [Google Scholar] [Crossref] 
  2. Andrade, T. A., Hamerski, F., Fetzer, D. E. L., Roda-Serrat, M. C., Corazza, M. L., Norddahl, B. & Errico, M. (2021). Ultrasound-assisted pressurized liquid extraction of anthocyanins from Aronia melanocarpa pomace. Separation and Purification Technology, 276, 119290.  [Google Scholar] [Crossref] 
  3. Bagchi, D., Bagchi, M., Stohs, S. J., Das, D. K., Ray, S. D., Kuszynski, C. A., Joshi, S. S., & Pruess, H. G. (2000). Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 148(2-3), 187-197.  [Google Scholar] [Crossref] 
  4. Bajec, M. R., & Pickering, G. J. (2008). Astringency: mechanisms and perception. Critical Reviews in Food Science and Nutrition, 48(9), 858-875.  [Google Scholar] [Crossref] 
  5. Bakir, K. (2019). The detailed determinations of phenolic antioxidants in aronia (Aronia Melanocarpa Sp.Viking) berry fruit based tea and nutraceutical products: The investigation of the usability as antiproliferative and anticarcinogenic food supplements. M. Sc. Thesis. Department of Food Engineering, Manisa Celal Bayar University.  [Google Scholar]
  6. Balcerek, M. & Szopa, J. S. (2002). Optimization of the technology of aronia spirit production - Part 1: Selection of the fermentation conditions. Deutsche Lebensmittel-Rundschau, 98(9), 326-331. [Google Scholar]
  7. Banach, M., Wiloch, M., Zawada, K., Cyplik, W., & Kujawski, W. (2020). Evaluation of antioxidant and anti-inflammatory activity of anthocyanin-rich water-soluble aronia dry extracts. Molecules, 25(18), 4055.  [Google Scholar] [Crossref] 
  8. Bell, D. R., & Gochenaur, K. (2006). Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. Journal of Applied Physiology, 100(4), 1164-1170.  [Google Scholar] [Crossref] 
  9. Benvenuti, S., Pellati, F., Melegari, M. & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69, 164-169.  [Google Scholar] [Crossref] 
  10. Bermúdez-Soto, M. J., Larrosa, M., Garcia-Cantalejo, J. M., Espín, J. C., Tomás-Barberan, F. A., & García-Conesa, M. T. (2007). Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice. The Journal of Nutritional Biochemistry, 18(4), 259-271.  [Google Scholar] [Crossref] 
  11. Bhaswant, M., Shafie, S. R., Mathai, M. L., Mouatt, P., & Brown, L. (2017). Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition, 41, 24-31.  [Google Scholar] [Crossref] 
  12. Bontsidis, C., Mallouchos, A., Terpou, A., Nikolaou, A., Batra, G., Mantzourani, I., Alexopoulos, A., & Plessas, S. (2021). Microbiological and chemical properties of chokeberry juice fermented by novel lactic acid bacteria with potential probiotic properties during fermentation at 4 °C for 4 weeks. Foods, 10(4), 768.  [Google Scholar] [Crossref] 
  13. Borycka, B. & Stachowiak, J. (2008). Relations between cadmium and magnesium and aronia fractional dietary fibre. Food Chemistry, 107: 44-48. [Google Scholar] [Crossref] 
  14. Boycheva, S., Dimitrov, T., Naydenova, N. & Mihaylova, G. (2011). Quality characteristics of yogurt from goat’s milk, supplemented with fruit juice. Czech Journal of Food Sciences, 29(1), 24-30.  [Google Scholar]
  15. Braga, A. R. C., Murador, D. C., de Souza Mesquita, L. M. & de Rosso, V. V. (2018). Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis, 68, 31-40.  [Google Scholar] [Crossref] 
  16. Bräunlich, M., Økstad, O. A., Slimestad, R., Wangensteen, H., Malterud, K. E., & Barsett, H. (2013). Effects of Aronia melanocarpa constituents on biofilm formation of Escherichia coli and Bacillus cereus. Molecules, 18(12), 14989–14999.  [Google Scholar] [Crossref] 
  17. Bushmeleva, K., Vyshtakalyuk, A., Terenzhev, D., Belov, T., Parfenov, A., Sharonova, N., Nikitin, E., & Zobov, V. (2021). Radical scavenging actions and immunomodulatory activity of Aronia melanocarpa propylene glycol extracts. Plants, 10(11), 2458.  [Google Scholar] [Crossref] 
  18. Butorová, L., Vítová, E. & Polovka, M. (2016). Comparison of volatiles identified in Aronia melanocarpa and Amelanchier alnifolia using solid-phase microextraction coupled to gas chromatography-mass spectrometry. Journal of Food and Nutrition Research, 55, 57-68.  [Google Scholar]
  19. Catalkaya, G. (2015). In vitro bioaccessibility of anthocyanins in black chokeberry (Aronia melanocarpa) added yogurts. M. Sc. Thesis. Department of Food Engineering, İstanbul Technical University. [Google Scholar]
  20. Chen, J., Zhu, J. & Meng, X. (2020). Aronia melanocarpa anthocyanin extracts are an effective regulator of suppressor of cytokine signaling 3-dependent insulin resistance in HepG2 and C2C12 cells. Journal of Functional Foods, 75, 104258.  [Google Scholar] [Crossref] 
  21. Choi, H. S., Kim, S. L., Kim, J. H., Deng, H. Y., Yun, B. S., & Lee, D. S. (2018a). Triterpene acid (3-O-p-Coumaroyltormentic Acid) isolated from aronia extracts inhibits breast cancer stem cell formation through downregulation of c-Myc protein. International Journal of Molecular Sciences, 19(9), 2528.   [Google Scholar] [Crossref] 
  22. Choi, H. S., Kim, J. H., Kim, S. L., Deng, H. Y., Lee, D., Kim, C. S., Yun, B. S., & Lee, D. S. (2018b). Catechol derived from aronia juice through lactic acid bacteria fermentation inhibits breast cancer stem cell formation via modulation Stat3/IL-6 signaling pathway. Molecular Carcinogenesis, 57(11), 1467-1479. [Google Scholar] [Crossref] 
  23. Cui, Y., Lin, Y., Meng, X., Ma, J., Deng, H., Liu, X., He, X. & Zhao, J. (2021). Cyanidin-3-galactoside from Aronia melanocarpa ameliorates PM10 induced pulmonary injury by modulating M1/M2 macrophage polarization and NRF2/Sirt1 MAPK signaling. Journal of Functional Foods, 78, 104363.  [Google Scholar] [Crossref] 
  24. Ćujić, N., Savikin, K., Miloradovic, Z., Ivanov, M., Vajic, U., Karanovic, D., Grujic-Milanovic, J., Jovovic, D. & Mihailovic-Stanojevic, N. (2018). Characterization of dried chokeberry fruit extract and its chronic effects on blood pressure and oxidative stress in spontaneously hypertensive rats. Journal of Functional Foods, 44, 330-339.  [Google Scholar] [Crossref] 
  25. Cușmenco, T. & Bulgaru, V. (2020). Quality characteristics and antioxidant activity of goat milk yogurt with fruits. Ukrainian Food Journal, 9(1), 86-98.  [Google Scholar] [Crossref] 
  26. Dąbrowska, Z., Dąbrowska, E., Onopiuk, B., Onopiuk, P., Orywal, K., Mroczko, B., & Pietruska, M. (2019). The protective impact of black chokeberry fruit extract (Aronia melanocarpa L.) on the oxidoreductive system of the parotid gland of rats exposed to cadmium. Oxidative Medicine and Cellular Longevity, 2019, Article 3403264.  [Google Scholar] [Crossref] 
  27. Daoutidou, M., Plessas, S., Alexopoulos, A., & Mantzourani, I. (2021). Assessment of antimicrobial activity of pomegranate, cranberry, and black chokeberry extracts against foodborne pathogens. Foods, 10(3), 486.  [Google Scholar] [Crossref] 
  28. Daskalova, E., Delchev, S., Vladimirova-Kitova, L., Kitov, S., & Denev, P. (2021). Black chokeberry (Aronia melanocarpa) functional beverages increase HDL-cholesterol levels in aging rats. Foods, 10(7), 1641.  [Google Scholar] [Crossref] 
  29. Davies, K. J. A. (2000). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50, 279-289. [Google Scholar] [Crossref] 
  30. Denev, P. N., Kratchanov, C. G., Číž, M., Lojek, A. & Kratchanova, M. G. (2012). Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: A review. Comprehensive Reviews in Food Science and Food Safety, 11, 471-489.  [Google Scholar] [Crossref] 
  31. Denev, P., Číž, M., Kratchanova, M., & Blazheva, D. (2019). Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities. Food Chemistry, 284, 108–117.  [Google Scholar] [Crossref] 
  32. Deng, H., Zhu, J., Tong, Y., Kong, Y., Tan, C., Wang, M., Wan, M. & Meng, X. 2021. Antibacterial characteristics and mechanisms of action of Aronia melanocarpa anthocyanins against Escherichia coli. LWT, 150, Article 112018.  [Google Scholar] [Crossref] 
  33. Dimitrellou, D., Solomakou, N., Kokkinomagoulos, E. & Kandylis, P. (2020). Yogurts supplemented with juices from grapes and berries. Foods, 9(9), 1158.  [Google Scholar] [Crossref] 
  34. Du, X. & Myracle, A. D. (2018). Development and evaluation of kefir products made with aronia or elderberry juice: Sensory and phytochemical characteristics. International Food Research Journal, 25(4): 1373-1383.  [Google Scholar]
  35. Duffy, V. B., Rawal, S., Park, J., Brand, M. H., Sharafi, M., & Bolling, B. W. (2016). Characterizing and improving the sensory and hedonic responses to polyphenol-rich aronia berry juice. Appetite, 107, 116-125.  [Google Scholar] [Crossref] 
  36. Faff, J. & Frankiewicz-Jóźko, A. (2003). Effect of anthocyanins from aronia melanocarpa on the exercise-induced oxidative stress in rat tissues. Biology of Sport, 20(1), 15-23.  [Google Scholar]
  37. FAO/WHO. (2003). Codex standard for fermented milks 243. In Codex Alimentarius Commission: Milk and Milk Products, Rome.  [Google Scholar]
  38. Francik, R., Krośniak, M., Sanocka, I., Bartoń, H., Hebda, T. & Francik, S. (2014). Aronia melanocarpa treatment and antioxidant status in selected tissues in wistar rats. BioMed Research International, 2014, Article: 457085.  [Google Scholar] [Crossref] 
  39. Gajic, D., Saksida, T., Koprivica, I., Vujicic, M., Despotovic, S., Savikin, K., Jankovic, T. & Stojanovic, I. (2020). Chokeberry (Aronia melanocarpa) fruit extract modulates immune response in vivo and in vitro. Journal of Functional Foods, 66, 103836.  [Google Scholar] [Crossref] 
  40. Gasiorowski, K., Szyba, K., Brokos, B., Kołaczyńska, B., Jankowiak-Włodarczyk, M., & Oszmiański, J. (1997). Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters, 119(1), 37-46.  [Google Scholar] [Crossref] 
  41. Gill, N. K., Rios, D., Osorio-Camacena, E., Mojica, B. E., Kaur, B., Soderstrom, M. A., Gonzalez, M., Plaat, B., Poblete, C., Kaur, N., Singh, H., & Forester, S. C. (2021). Anticancer effects of extracts from three different chokeberry species. Nutrition and Cancer, 73(7), 1168-1174.  [Google Scholar] [Crossref] 
  42. Halliwell, B. & Gutteridge, J. M. C. Antioxidant defences synthesized in vivo. In B. Halliwell & J. M. C. Gutteridge (Eds.). Free Radicals in Biology and Medicine (5th ed., pp. 77-152). Oxford, Oxford University Press.  [Google Scholar] [Crossref] 
  43. Handeland, M., Grude, N., Torp, T., & Slimestad, R. (2014). Black chokeberry juice (Aronia melanocarpa) reduces incidences of urinary tract infection among nursing home residents in the long term-a pilot study. Nutrition Research, 34(6), 518-525.  [Google Scholar] [Crossref] 
  44. Hirvi, T. & Honkanen, E. (1985). Analysis of the volatile constituents of black chokeberry (Aronia melanocarpa Ell.). Journal of the Science of Food and Agriculture. 36: 808-810. [Google Scholar] [Crossref] 
  45. Istas, G., Wood, E., Le Sayec, M., Rawlings, C., Yoon, J., Dandavate, V., Cera, D., Rampelli, S., Costabile, A., Fromentin, E., & Rodriguez-Mateos, A. (2019). Effects of aronia berry (poly)phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men. The American Journal of Clinical Nutrition, 110(2), 316-329.  [Google Scholar] [Crossref] 
  46. Jakobek, L., Šeruga, M., Medvidović-Kosanović, M. & Novak, I. (2007). Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agriculturae Conspectus Scientificus, 72 (4), 301-306.  [Google Scholar]
  47. Jakobek, L., Šeruga, M., & Krivak, P. (2011). The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa). International Journal of Food Sciences and Nutrition, 62(4), 345–352.  [Google Scholar] [Crossref] 
  48. Jang, B. K., Lee, J. W., Choi, H., & Yim, S. V. (2020). Aronia melanocarpa fruit bioactive fraction attenuates LPS-induced inflammatory response in human bronchial epithelial cells. Antioxidants, 9(9), 816.  [Google Scholar] [Crossref] 
  49. Jeon, Y. D., Kang, S. H., Moon, K. H., Lee, J. H., Kim, D. G., Kim, W., Kim, J. S., Ahn, B. Y., & Jin, J. S. (2018). The effect of aronia berry on type 1 diabetes in vivo and in vitro. Journal of Medicinal Food, 21(3), 244-253.  [Google Scholar] [Crossref] 
  50. Jeong, O., & Kim, H. S. (2019). Dietary chokeberry and dried jujube fruit attenuates high-fat and high-fructose diet-induced dyslipidemia and insulin resistance via activation of the IRS-1/PI3K/Akt pathway in C57BL/6 J mice. Nutrition & Metabolism, 16, 38.  [Google Scholar] [Crossref] 
  51. Kähkönen, M. P., Hopia, A. I., & Heinonen, M. (2001). Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry, 49(8), 4076–4082.  [Google Scholar] [Crossref] 
  52. Kang, S. H., Jeon, Y. D., Moon, K. H., Lee, J. H., Kim, D. G., Kim, W., Myung, H., Kim, J. S., Kim, H. J., Bang, K. S., & Jin, J. S. (2017). Aronia Berry extract ameliorates the severity of dextran sodium sulfate-induced ulcerative colitis in mice. Journal of Medicinal Food, 20(7), 667-675.  [Google Scholar] [Crossref] 
  53. Kapci, B. (2013). Characteristic components and antioxidant potential of black chokeberry (Aronia Melanocarpa) products. M. Sc. Thesis. Department of Food Engineering, Istanbul Technical University. [Google Scholar]
  54. Kardum, N., Konić-Ristić, A., Savikin, K., Spasić, S., Stefanović, A., Ivanišević, J., & Miljković, M. (2014a). Effects of polyphenol-rich chokeberry juice on antioxidant/pro-oxidant status in healthy subjects. Journal of Medicinal Food, 17(8), 869-874.  [Google Scholar] [Crossref] 
  55. Kardum, N., Takić, M., Šavikin, K., Zec, M., Zdunić, G., Spasić, S. & Konić-Ristić, A. (2014b). Effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women. Journal of Functional Foods, 9, 89-97.  [Google Scholar] [Crossref] 
  56. Kędzierska, M., Malinowska, J., Kontek, B., Kołodziejczyk-Czepas, J., Czernek, U., Potemski, P., Piekarski, J., Jeziorski, A., & Olas, B. (2013). Chemotherapy modulates the biological activity of breast cancer patients plasma: The protective properties of black chokeberry extract. Food and Chemical Toxicology, 53, 126-132.  [Google Scholar] [Crossref] 
  57. Kim, N. H., Jegal, J., Kim, Y. N., Heo, J. D., Rho, J. R., Yang, M. H., & Jeong, E. J. (2018). Chokeberry extract and its active polyphenols suppress adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice. Nutrients, 10(11), 1734.  [Google Scholar] [Crossref] 
  58. Kim, S. S., & Shin, Y. (2020). Antibacterial and in vitro antidementia effects of aronia (Aronia melanocarpa) leaf extracts. Food Science and Biotechnology, 29(9), 1295-1300.  [Google Scholar] [Crossref] 
  59. Kokotkiewicz, A. Jaremicz, Z. & Luczkiewicz, M. (2010). Aronia plants: A review of traditional use, biological activities, and perspectives for modern medicine. Journal of Medicinal Food, 13(2), 255-269.  [Google Scholar] [Crossref] 
  60. Kowalczyk, E., Charyk, K., Fijałkowski, P., Niedworok, J., Błaszczyk, J. & Kowalski, J. (2004). Protective influence of natural anthocyanins of Aronia melanocarpa on selected parameters of antioxidative status in experimental intoxication with sulphide-2-chloroethyl-3-chloropropyl. Polish Journal of Environmental Studies, 13(3), 339-341. [Google Scholar]
  61. Kulling, S.E. & Rawel, H.M. (2008). Chokeberry (Aronia melanocarpa) – A review on the characteristic components and potential health effects. Planta Medica, 74: 1625–1634.  [Google Scholar] [Crossref] 
  62. Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Wu, M., Sackey, A. S., Xiao, L., & Tahir, H. E. (2018). Effect of Lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chemistry, 250, 148-154.  [Google Scholar] [Crossref] 
  63. Laaksonen, O., Knaapila, A., Niva, T., Deegan, K. C. & Sandell, M. (2016). Sensory properties and consumer characteristics contributing to liking of berries. Food Quality and Preference, 53, 117-126.  [Google Scholar] [Crossref] 
  64. Lala, G., Malik, M., Zhao, C., He, J., Kwon, Y., Giusti, M. M., & Magnuson, B. A. (2006). Anthocyanin-rich extracts inhibit multiple biomarkers of colon cancer in rats. Nutrition and Cancer, 54(1), 84-93.  [Google Scholar] [Crossref] 
  65. Lee, K. P., Choi, N. H., Kim, H. S., Ahn, S., Park, I. S., & Lee, D. W. (2018). Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice. Nutrition Research and Practice, 12(1), 13-19.  [Google Scholar] [Crossref] 
  66. Li, T., Jiang, T., Liu, N., Wu, C., Xu, H. & Lei, H. (2021). Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chemistry, 339, 127859.  [Google Scholar] [Crossref] 
  67. Li, Y., Nguepi Tsopmejio, I. S., Diao, Z., Xiao, H., Wang, X., Jin, Z., & Song, H. (2022). Aronia melanocarpa (Michx.) Elliott. attenuates dextran sulfate sodium-induced Inflammatory Bowel Disease via regulation of inflammation-related signaling pathways and modulation of the gut microbiota. Journal of Ethnopharmacology, 292, 115190.  [Google Scholar] [Crossref] 
  68. Liepiņa, I., Nikolajeva, V. & Jākobsone, I. (2013). Antimicrobial activity of extracts from fruits of Aronia melanocarpa and Sorbus aucuparia. Environmental and Experimental Biology, 11, 195-199. [Google Scholar]
  69. Malik, M., Zhao, C., Schoene, N., Guisti, M. M., Moyer, M. P., & Magnuson, B. A. (2003). Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells. Nutrition and Cancer, 46(2), 186-196.  [Google Scholar] [Crossref] 
  70. Markkinen, N., Laaksonen, O., Nahku, R., Kuldjärv, R. & Yang, B. (2019). Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chemistry, 286, 204-215.  [Google Scholar] [Crossref] 
  71. Martin, D. A., Taheri, R., Brand, M. H., Draghi, A., Sylvester, F. A. & Bolling, B. W. (2014). Anti-inflammatory activity of aronia berry extracts in murine splenocytes. Journal of Functional Foods, 8, 68-75.  [Google Scholar] [Crossref] 
  72. Matsumoto, M., Hara, H., Chiji, H., & Kasai, T. (2004). Gastroprotective effect of red pigments in black chokeberry fruit (Aronia melanocarpa Elliot) on acute gastric hemorrhagic lesions in rats. Journal of Agricultural and Food Chemistry, 52(8), 2226-2229.  [Google Scholar] [Crossref] 
  73. Merdzhanov, P., Angelov-Romova, M., Nenov, N., Zlatanov, M, Antov, G., Atanasov, T., Denev, P., & Stoyanova, A. (2013). Low temperature extraction of plants by liquificate gases waste of chokeberry fruits (Aronia melanocarpa (Michx) Elliott.). Journal of EcoAgriTourism, 9(1), 23-27.  [Google Scholar]
  74. Milutinović, M., Velickovic Radovanovic, R., Savikin, K., Radenkovic, S., Arvandi, M., Pesic, M., Kostic, M., Miladinovic, B., Brankovic, S., & Kitic, D. (2019). Chokeberry juice supplementation in type 2 diabetic patients - impact on health status. Journal of Applied Biomedicine, 17(4), 218-224.  [Google Scholar] [Crossref] 
  75. Mu, J., Xin, G., Zhang, B., Wang, Y., Ning, C., & Meng, X. (2020). Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats. Journal of Food Science, 85(4), 1307-1318.  [Google Scholar] [Crossref] 
  76. Naruszewicz, M., Laniewska, I., Millo, B., & Dłuzniewski, M. (2007). Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis, 194(2), 179-184.  [Google Scholar] [Crossref] 
  77. Nguyen, L., & Hwang, E. S. (2016). Quality characteristics and antioxidant activity of yogurt supplemented with aronia (Aronia melanocarpa) juice. Preventive Nutrition and Food Science, 21(4), 330-337.  [Google Scholar] [Crossref] 
  78. Oh, Y. J., Kim, T. S., Moon, H. W., Lee, S. Y., Lee, S. Y., Ji, G. E., & Hwang, K. T. (2020). Lactobacillus plantarum PMO 08 as a probiotic starter culture for plant-based fermented beverages. Molecules, 25(21), 5056.  [Google Scholar] [Crossref] 
  79. Ohgami, K., Ilieva, I., Shiratori, K., Koyama, Y., Jin, X. H., Yoshida, K., Kase, S., Kitaichi, N., Suzuki, Y., Tanaka, T., & Ohno, S. (2005). Anti-inflammatory effects of aronia extract on rat endotoxin-induced uveitis. Investigative Ophthalmology & Visual Science, 46(1), 275-281.  [Google Scholar] [Crossref] 
  80. Olas, B., Wachowicz, B., Tomczak, A., Erler, J., Stochmal, A., & Oleszek, W. (2008). Comparative anti-platelet and antioxidant properties of polyphenol-rich extracts from: berries of Aronia melanocarpa, seeds of grape and bark of Yucca schidigera in vitro. Platelets, 19(1), 70-77.  [Google Scholar] [Crossref] 
  81. Olika, M. (2022). The effects of addition of black chokeberry (Aronia melanocarpa) at different rates on some properties of yoghurt. M. Sc. Thesis. Department of Biotechnology, Çukurova University. [Google Scholar]
  82. Oszmiański, J. &Wojdylo, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221, 809–813.  [Google Scholar] [Crossref] 
  83. Ozdal, T., Capanoglu, E. & Altay, F. (2013). A review on protein–phenolic interactions and associated changes. Food Research International, 51(2), 954-970.  [Google Scholar] [Crossref] 
  84. Ozdemir, K. & Ozkan, E.E. (2020). Aronia Sp. meyvelerinin kimyasal bilesimi ve biyolojik aktiviteleri. Journal of Faculty of Pharmacy of Ankara University, 44(3): 557-570. [Google Scholar] [Crossref] 
  85. Reed J. (2002). Cranberry flavonoids, atherosclerosis and cardiovascular health. Critical Reviews in Food Science and Nutrition, 42(3 Suppl), 301-316.  [Google Scholar] [Crossref] 
  86. Rincón-León, F. (2003). Functional Foods. In B. Caballero (Ed.). Encyclopedia of Food Sciences and Nutrition (2nd ed., pp. 2827-2832). Cambridge, Masschusetts: Academic Press.  [Google Scholar]
  87. Rodríguez-Werner, M., Winterhalter, P., & Esatbeyoglu, T. (2019). Phenolic composition, radical scavenging activity and an approach for authentication of Aronia melanocarpa berries, juice, and pomace. Journal of Food Science, 84(7), 1791-1798.  [Google Scholar] [Crossref] 
  88. Rop, O., Mlcek, J., Jurikova, T., Valsikova, M., Sochor, J., Reznicek, V. & Kramarova, D. (2010). Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. Journal of Medicinal Plants Research, 4(22), 2431-2437.  [Google Scholar]
  89. Rudic, J., Jakovljevic, V., Jovic, N., Nikolic, M., Sretenovic, J., Mitrovic, S., Bolevich, S., Bolevich, S., Mitrovic, M., Raicevic, S., Andric, K., Dimkic Milenkovic, A., Rakic, D., & Joksimovic Jovic, J. (2022). Antioxidative effects of standardized Aronia melanocarpa extract on reproductive and metabolic disturbances in a rat model of polycystic ovary syndrome. Antioxidants, 11(6), 1099-2016.  [Google Scholar] [Crossref] 
  90. Santos-Buelga, C. & Scalbert, A. (2000). Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture, 80, 1094-1117.<1094::AID-JSFA569>3.0.CO;2-1  [Google Scholar] [Crossref] 
  91. Sayre, L. M., Perry, G., & Smith, M. A. (2008). Oxidative stress and neurotoxicity. Chemical Research in Toxicology, 21(1), 172-188.  [Google Scholar] [Crossref] 
  92. Senaka Ranadheera, C., Evans, C. A., Adams, M. C., & Baines, S. K. (2012). Probiotic viability and physico-chemical and sensory properties of plain and stirred fruit yogurts made from goat's milk. Food Chemistry, 135(3), 1411-1418.  [Google Scholar] [Crossref] 
  93. Simeonov, S. B., Botushanov, N. P., Karahanian, E. B., Pavlova, M. B., Husianitis, H. K., & Troev, D. M. (2002). Effects of Aronia melanocarpa juice as part of the dietary regimen in patients with diabetes mellitus. Folia Medica, 44(3), 20-23. [Google Scholar]
  94. Slimestad, R., Torskangerpoll, K., Nateland, J_H. S., Johannessen, T. & Giske, N. H. (2005). Flavonoids from black chokeberries, Aronia melanocarpa. Journal of Food Composition and Analysis, 18(1), 61-68.  [Google Scholar] [Crossref] 
  95. Sójka, M., Kołodziejczyk, K. & Milala, J. (2013). Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products, 51, 77-86. [Google Scholar] [Crossref] 
  96. Szajnar, K., Pawlos, M., & Znamirowska, A. (2021). The effect of the addition of chokeberry fiber on the quality of sheep's milk fermented by Lactobacillus rhamnosus and Lactobacillus acidophilus. International Journal of Food Science, 7928745.  [Google Scholar] [Crossref] 
  97. Skarpańska-Stejnborn, A., Basta, P., Sadowska, J., & Pilaczyńska-Szcześniak, L. (2014). Effect of supplementation with chokeberry juice on the inflammatory status and markers of iron metabolism in rowers. Journal of the International Society of Sports Nutrition, 11(1), 48.  [Google Scholar] [Crossref] 
  98. Skoczyñska, A., Jêdrychowska, I., Porêba, R., Affelska-Jercha, A., Turczyn, B., Wojakowska, A. & Andrzejak, R. (2007). Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmalogical Reports, 59(1), 177-182.  [Google Scholar]
  99. Sójka, M., Kołodziejczyk, K. & Milala, J. 2013. Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products, 51, 77-86.  [Google Scholar] [Crossref] 
  100. Song, E. K., Park, H., & Kim, H. S. (2019). Additive effect of walnut and chokeberry on regulation of antioxidant enzyme gene expression and attenuation of lipid peroxidation in d-galactose-induced aging-mouse model. Nutrition Research, 70, 60-69.  [Google Scholar] [Crossref] 
  101. Stojković, L., Jovanović, I., Zivković, M., Zec, M., Djurić, T., Zivotić, I., Kuveljić, J., Kolaković, A., Kolić, I., Djordjević, A., Glibetić, M., Alavantić, D., & Stanković, A. (2020). The effects of Aronia melanocarpa juice consumption on the mRNA expression profile in peripheral blood mononuclear cells in subjects at cardiovascular risk. Nutrients, 12(5), 1484.  [Google Scholar] [Crossref] 
  102. Stojković, L., Zec, M., Zivkovic, M., Bundalo, M., Bošković, M., Glibetić, M., & Stankovic, A. (2021). Polyphenol-rich Aronia melanocarpa juice consumption affects LINE-1 DNA methylation in peripheral blood leukocytes in dyslipidemic women. Frontiers in Nutrition, 8, 689055.  [Google Scholar] [Crossref] 
  103. Szopa, A., Kokotkiewicz, A., Kubica, P., Banaszczak, P., Wojtanowska‑Krośniak, A., Krośniak, M., Marzec‑Wróblewska, U., Badura, A., Zagrodzki, P., Bucinski, A., Luczkiewicz, M. & Ekiert, H. (2017). Comparative analysis of different groups of phenolic compounds in fruit and leaf extracts of Aronia sp.: A. melanocarpa, A. arbutifolia, and A. ×prunifolia and their antioxidant activities. European Food Research and Technology, 243, 1645-1657.  [Google Scholar] [Crossref] 
  104. Tamkutė, L., Vaicekauskaitė, R., Melero, B., Jaime, I., Rovira, J. & Venskutonis, P. R. (2021). Effects of chokeberry extract isolated with pressurized ethanol from defatted pomace on oxidative stability, quality and sensory characteristics of pork meat products. LWT, 150, 111943.  [Google Scholar] [Crossref] 
  105. Tanaka, T. & Tanaka, A. (2001). Chemical components and characteristics of black chokeberry. The Japanese Society for Food Science and Technology. 48, 606-610. [Google Scholar] [Crossref] 
  106. Tasic, N., Jakovljevic, V., Mitrovic, M., Djindjic, B., Tasic, D., Dragisic, D., Citakovic, Z., Kovacevic, Z., Radoman, K., Zivkovic, V., Bolevich, S., & Turnic, T. N. (2021). Black chokeberry Aronia melanocarpa extract reduces blood pressure, glycemia and lipid profile in patients with metabolic syndrome: a prospective controlled trial. Molecular and Cellular Biochemistry, 476(7), 2663-2673.  [Google Scholar] [Crossref] 
  107. Terpou, A., Papadaki, A., Lappa, I.K., Kachrimanidou, V., Bosnea, L.A. & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11: 1591-1623. [Google Scholar] [Crossref] 
  108. Thi, N. D. & Hwang, E. (2018). Effects of black chokeberry extracts on metastasis and cell-cycle arrest in SK-Hep1 human liver cancer cell line. Asian Pacific Journal of Tropical Biomedicine, 8(6), 285-291.  [Google Scholar] [Crossref] 
  109. Tolić, M. T., Jurčević, I. L., Krbavčić, I. P., Marković, K., & Vahčić, N. (2015). Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) Products. Food Technology and Biotechnology, 53(2), 171–179.  [Google Scholar] [Crossref] 
  110. Valcheva-Kuzmanova, S., Borisova, P., Galunska, B., Krasnaliev, I., & Belcheva, A. (2004). Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats. Experimental and Toxicologic Pathology, 56(3), 195-201.  [Google Scholar] [Crossref] 
  111. Valcheva-Kuzmanova, S., Kuzmanov, K., Mihova, V., Krasnaliev, I., Borisova, P., & Belcheva, A. (2007). Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats fed a high-cholesterol diet. Plant Foods for Human Nutrition, 62(1), 19-24.  [Google Scholar] [Crossref] 
  112. Valcheva-Kuzmanova, S., Kuzmanov, A., Kuzmanova, V., & Tzaneva, M. (2018). Aronia melanocarpa fruit juice ameliorates the symptoms of inflammatory bowel disease in TNBS-induced colitis in rats. Food and Chemical Toxicology, 113, 33-39.  [Google Scholar] [Crossref] 
  113. Wei, J., Yu, W., Hao, R., Fan, J., & Gao, J. (2020). Anthocyanins from Aronia melanocarpa induce apoptosis in Caco-2 cells through Wnt/β-catenin signaling pathway. Chemistry & Biodiversity, 17(11), 2000654.  [Google Scholar] [Crossref] 
  114. Wu, X., Gu, L., Prior, R. L., & McKay, S. (2004). Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry, 52(26), 7846–7856.  [Google Scholar] [Crossref] 
  115. Wu, C., Li, T., Qi, J., Jiang, T., Xu, H. & Lei, H. (2020). Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT, 122, 109064.  [Google Scholar] [Crossref] 
  116. Xie, L., Vance, T., Kim, B., Lee, S. G., Caceres, C., Wang, Y., Hubert, P. A., Lee, J. Y., Chun, O. K., & Bolling, B. W. (2017). Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutrition Research, 37, 67-77.  [Google Scholar] [Crossref] 
  117. Yamane, T., Kozuka, M., Imai, M., Yamamoto, Y., Ohkubo, I., Sakamoto, T., Nakagaki, T. & Nakano, Y. (2017). Reduction of blood pressure by aronia berries through inhibition of angiotensin-converting enzyme activity in the spontaneously hypertensive rat kidney. Functional Foods in Health and Disease, 7(4), 280.  [Google Scholar]
  118. Yaneva, T., Dinkova, R., Gotcheva, V. & Angelov, A. (2021). Modulation of the antioxidant activity of a functional oat beverage by enrichment with chokeberry juice. Journal of Food Processing and Preservation, e16012.  [Google Scholar] [Crossref] 
  119. Yu, S. Y., Kim, M. B., Park, Y. K., Bae, M., Kang, H., Hu, S., Pham, T. X., Carpenter, R., Lee, J., Lee, O. H., Lee, J. Y., & Kim, Y. C. (2021). Anthocyanin-rich aronia berry extract mitigates high-fat and high-sucrose diet-induced adipose tissue inflammation by inhibiting nuclear Factor-κ B activation. Journal of Medicinal Food, 24(6), 586-594.  [Google Scholar] [Crossref] 
  120. Zhu, Y., Sun, H., He, S., Lou, Q., Yu, M., Tang, M., & Tu, L. (2018). Metabolism and prebiotics activity of anthocyanins from black rice (Oryza sativa L.) in vitro. PloS One, 13(4), 0195754.  [Google Scholar] [Crossref] 
  121.   [Google Scholar]