International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2022, Vol. 6(3) 205-217

Optimal Propagation and Rooting Mediums in Rubus spp. by in Vitro Micropropagation

Hayat Topçu

pp. 205 - 217   |  DOI: https://doi.org/10.29329/ijiaar.2022.475.4

Published online: September 30, 2022  |   Number of Views: 100  |  Number of Download: 390


Abstract

Rubus spp. is a shrub-form plant known for its fruits called blackberries. Blackberries are plants with high commercial value, delicious taste, nice aroma, and high nutritional value. Turkey has wealthy genetic origins of Rubus species. Conventionally, the trading propagation of Rubus plants is done as vegetatively, utilizing truncation, rooting, or stratuming. However, these traditional methods are time-consuming and inefficient in virus-free plant production. Cloning of plant grown in the tissue culture also enables to obtain virus-free plants and to provide fast replicating high standard plants. Rubus obtained by micropropagation is used for the formation of commercial fruit plantations as well as source plant formation. In this work, the aim is the development of in vitro micropropagation process of the wild Rubus in the Trakya Region. Proliferation from axillary buds was made by adding BAP (6-Benzylaminopurine), NAA (Naphthalinacetic acid) and GA3 (Gibberellic acid) in various combinations and concentrations to the MS medium. Rooting was successfully realized with 83.3% rooted plants in 1 IBA medium. No roots were seen in 0 MS. The survival rate of plants transferred to ex vitro conditions was 100%.

Keywords: Micropropagation, In Vitro, Apical Buds, Shoot, Root, Ex Vitro


How to Cite this Article

APA 6th edition
Topcu, H. (2022). Optimal Propagation and Rooting Mediums in Rubus spp. by in Vitro Micropropagation . International Journal of Innovative Approaches in Agricultural Research, 6(3), 205-217. doi: 10.29329/ijiaar.2022.475.4

Harvard
Topcu, H. (2022). Optimal Propagation and Rooting Mediums in Rubus spp. by in Vitro Micropropagation . International Journal of Innovative Approaches in Agricultural Research, 6(3), pp. 205-217.

Chicago 16th edition
Topcu, Hayat (2022). "Optimal Propagation and Rooting Mediums in Rubus spp. by in Vitro Micropropagation ". International Journal of Innovative Approaches in Agricultural Research 6 (3):205-217. doi:10.29329/ijiaar.2022.475.4.

References
  1. Aguilera-Arango, G.A., Gómez-López, E.D. & González-Mejia. A.  (2019). Callogénesisen   cultivares   híbridos   de   Cocos   nucifera   L.   mediante   cultivo   in   vitro de inflorescencias in maduras. Biotecnología Vegeta, l 19(4):277-284. [Google Scholar]
  2. Akin, M., Eyduran, S.P., Ercisli, S., Toteva, V.K. & Eyduran, E. (2016). Phytochemical profiles of wild blackberries, black and white mulberries fr.om southern Bulgaria. Biotechnology & Biotechnological Equipment, 30:899-906. [Google Scholar]
  3. Andrade, A., Gómez, L., Torres, Y. & Aguilera-Arango., G. (2021). Evaluation Of Growing Media for the In Vitro Establishment, Multiplication and Rooting of Blackberry (Rubus glaucusBenth.). Chilean J. Agric. Anim. Sci., ex Agro-Ciencia, 37(2):117-127.    [Google Scholar]
  4. Bite, A. & Petrevica, L. (2002). The influence of in vitro propagation on the field behaviour of red raspberry variety ‘Norna’. Acta Hortic., 585, 615–619. [Google Scholar]
  5. Bobrowski, V. L., Mello-Farias, P. & Peters, C.P. (1996). Micropropagation of blackberries (Rubus sp.) cultivars. Revista Brasileira de Agrociencia 2:17-20 (in Italian). [Google Scholar]
  6. Borodulina, I.D., Plaksina, T.V., Panasenko, V.N. & Sokolova, G.G. (2019). Оptimization of blackberry clonal micropropagation. Ukrainian Journal of Ecology, 9(3):339-345. [Google Scholar]
  7. Boxus, P., Damiano, C. & Brasseur, E. (1989). Strawberry. In: Ammirato P, Evans d, Sharp W, Yamada Y (Eds). Handbook of plant cell culture. New York, Macmillan pp 453-486. [Google Scholar]
  8. Broome, O.C. & Zimmerman, R.H. (1978). Invitro propagation of blackberry. HortScience, 13:151-153. [Google Scholar]
  9. Caldwell, J.D. (1984). Blackberry propagation. HortScience, 2:193-195. [Google Scholar]
  10. Cancino-Escalante, G.O., Sánchez-Montaño, L.R., Quevedo-García, E. & Díaz-Carvajal, C. (2011). Caracterización fenotípica de accesiones de especies de Rubus L.  de los municipios de Pamplona y Chitagá, región Nororiental de Colombia. Universitas Scientiarum 16(3):219-233. [Google Scholar]
  11. Cao, X &, Hammerschlag, F.A. (2000). Improved shoot organogenesis from leaf explants of highbush blueberry. HortScience, 35:945-947. [Google Scholar]
  12. Cousineau, J.C. & Donnelly, D.J. (1991). Adventitious shoot regeneration from leaf explants of tissue cultured and greenhouse-grown raspberry. Plant Cell Tissue Organ Culture, 27:249-255. [Google Scholar]
  13. De Oliveira, R.P. & Nino, A.F.P. (2009). In vıtro multiplication rate of raspberry cultıvars. Rev. Bras. Frutic., Jaboticabal - SP, 31,1, 280-284 (in Portuguese). [Google Scholar]
  14. Debnath, S.C. (2004). Clonal propagation of dwarf raspberry (Rubus pubescens Raf.) through in vitro axillary shoot proliferation. AGRIS. 43(2):179-186. ISSN: 0167-6903. [Google Scholar]
  15. Demenko, V.I., Shestibratov, K.A. & Lebedev, V.G. (2014). Ukorenenie – klyuchevoj etap razmnozheniya rastenij in vitro. Izvestiya TSKHA, 1, 13–26 (in Russian). [Google Scholar]
  16. Diaconeasa, Z., Ranga, F., Rugină, D., Cuibus, L. & Socaciu, C. (2014). HPLC/PDA-ESI/MS   identification   of   phenolic   acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. Journal of Food and Nutrition Research, 2:781-785. [Google Scholar]
  17. Dziedzic, E. & Jagła, J. (2013). Micropropagation of Rubus and Ribes spp. In Protocols for Micropropagation of Selected Economically Important Horticultural Plants; Lambardi, M., Ozudogru, E.A., Jain, S.M., Eds.; Humana Press: Totowa, NJ, USA, 149–160. ISBN 978-1-62703-073-1. [Google Scholar]
  18. Ercisli, S. (2014). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evaluation, 51, 419-435. [Google Scholar]
  19. Ercisli, S. & Orhan, E. (2005). Natural mulberry (Morus spp.) production in Erzurum region in Turkey. In Proceedings of the international scientific conference, ‘environmentally friendly fruit growing’ (p. 129–136). 7–9 September 2005, Tartu – Estonia. [Google Scholar]
  20. Espinosa, B.N., M.G.A., Ligarreto, M.L.S., Barrero, C.C.I. & Medina. (2016).   Variabilidad morfológica de variedades nativas de mora (Rubus sp.) en los Andes de Colombia. Revista Colombiana de Ciencias Hortícolas, 10(2):211-221. [Google Scholar]
  21. Fiola, J.A., Hassan, M.A., Swartz, H.J. & McNicols, R. (1990). Effect of thidiazuron, light fluence rates and kanamycin on in vitroshoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell Tissue Organ Culture, 20:223-228. [Google Scholar]
  22. Galletta, G.J., Draper, A.D., Maas, J.L., Skirvin, R.M., Otterbacher, A.G., Swartz, H.J. & Chandler C.K. (1998). Chester thornless, blackberry, Fruit Var. J., 52(3), 118-122. [Google Scholar]
  23. Georgieva, M., Kondakova, V., Dragoyski, K., Georgiev, D. & Naydenova, G. (2009). Comparative study of raspberry cv. Balgarski Rubin propagated by classical and in vitro methods. J. Pomol. 43, 81–86. [Google Scholar]
  24. Graham, J., Squire, G.R., Marshall, B. & Harrison, R.E. (1997). Spatially-dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Mol Ecol 6: 272–281. [Google Scholar]
  25. Huang, J.Y.   &   Hu, J. M.   (2009).   Revision of Rubus (Rosaceae) in Taiwan.  Taiwania, 54(4):285-310. [Google Scholar]
  26. Jadan, M., Ruiz, J., Soria, N. & Mihal, R.A. (2015). Synthetic seeds production and the induction of organogenesis in blackberry (Rubus glaucusBenth). Romanian Biotechnological Letters, 20:10134-10142. [Google Scholar]
  27. Kefayeti, S., Kafkas, E.& Ercisli, S. (2019). Micropropagation of ʻChesterthornlessʼ Blackberry Cultivar using Axillary Bud Explants. Not. Bot. HortiAgrobo, 47(1), 162–168. [Google Scholar]
  28. Leitzke, L., Damiani C. & Wulff, M. (2009). Multiplicação e enraizamento in vitro de amoreira-preta “Xavante”: efeito da concentração de sais, do tipo de explante e de carvão ativado no meio de cultura, Ciência agrotecnologia. Lavras, 33, 1959-1966. [Google Scholar]
  29. Martin, R.R. (2002). Virus diseases of Rubus and strategies for their control. Acta Hortic. 585, 265–270. [Google Scholar]
  30. Marulanda, M., Carvajalino, M. & Vento, H. (2000). Establecimiento y multiplicación in vitro de plantas seleccionadas de Rubus glaucus Benth para el departamento de Risaralda (Colombia). Actualidades Biológicas, 22(73), 121-129. [Google Scholar]
  31. Matushkin, S. A.& Yarmolenko, L. V. (2017). Vliyanie mineral'nogo sostava pitatel'noj sredy na rizogenez yagodnyh kul'tur in vitro. Sbornik nauchnyh trudov GNBS, t. 144, 2, 73–76 (in Russian). [Google Scholar]
  32. Meng, R., Chen, T.H.H., Finn, C. E. & Li, J. (2004). Improving in vitro plant regeneration from leaf and petiole explants of ‘Marion’ blackberry. HortScience, 39:316-320. [Google Scholar]
  33. Mezzetti, B., Savini, G., Carnevali, F & Moti, D. (1997).  Plant genotype and growth regulators interaction affecting in vitro morphogenesis of blackberry and raspberry. Biologia Plantarum, 39:139-150.  [Google Scholar]
  34. Muñoz-Concha, D., Quintero, J.  & Ercişli, S.  (2021). Media and hormones influence in micropropagation success of blackberry cv. ‘Chester’. Research Journal of Biotechnology. 16 (5):103-108. [Google Scholar]
  35. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum, 15:473-479. [Google Scholar]
  36. Muratova, S. A. (2017). Biotekhnologicheskie aspekty razmnozheniya plodovyh i yagodnyh kul'tur. Sbornik nauchnyh trudov GNBS, 144, 2, 84–89 (in Russian). [Google Scholar]
  37. McNicol, R. J. & Graham, J. (1990). In vitro regeneration of Rubus from leaf and stem segments. Plant cell tissue and organ culture, 21: 45–50. [Google Scholar]
  38. Najaf-Abadi, A. J. & Hamidoghli, Y. (2009). Micropropagation of Thornless Trailing Blackberry (‘Rubus sp.’) by Axillary Bud Explants. Australian Journal of Crop Science, 3(4): 191-194. [Google Scholar]
  39. De Oliveira, R. P. & Pacheco Nino, A. F. (2009). In vitro multiplication rate of raspberry cultivars. Rev. Bras. Frutic., Jaboticabal, 31, 1, 280-284 (in Italian). [Google Scholar]
  40. Orlikowska, T.  (1984).  Micropropagation of Roodknop cv.  black currant. Fruit Science Reports 11:15-17. [Google Scholar]
  41. Petri, C. & Burgos, L (2005). Transformation of fruit trees: useful breeding tool or continued future prospect? Transgenic Research, 14:15-26. [Google Scholar]
  42. Raeva-Bogoslovskaya, E N., Molkanova, O., Krakhmaleva, I. L. & Sobolev, E. V.  (2021). Biotechnology methods to produce planting material of the genus Rubus L.  IOP Conf. Series: Earth and Environmental Science, 941, 012027.      [Google Scholar]
  43. Shornikov, D. G., Bryuhina S. A., Muratova S. A., Yankovskaya M. B. & Papihin R. V. (2010). Optimizaciya uslovij kul'tivirovaniya invitro yagodnyh i dekorativnyh kul'tur. Vestnik TGU, t. 15, 2, 640–645 (in Russian). [Google Scholar]
  44. Sigarroa-Rieche, A. & García-Delgado, C. (2011). Establecimiento y multiplicación in vitro de mora de castilla (Rubus glaucus Benth.) variedad sin espinas, mediante ápices meristemáticos. Acta Agron 60(4), 347-354. [Google Scholar]
  45. Snedecor, G.W. & Cochran, W.G. (1967). Statistical Methods, ed. 6. Ames, Iowa, The Iowa State University Press. [Google Scholar]
  46. Swartz, H.J., Bors, R., Mohamed, F. & Naes, S.K (1990). The effect of in vitropretreatments on subsequent shoot organogenesis from excised Rubusand Malus leaves. Plant Cell Tissue Organ Culture, 21:179-184. [Google Scholar]
  47. Tavartkiladze, O. K. & Vechernina, N. A. (2007). Razmnozhenie ezheviki v kul'ture in vitro. Biologicheskie nauki, 8, 28–30 (in Russian). [Google Scholar]
  48. Turk, B.A., Swartz, H.J. & Zimmerman, R.H.  (1994). Adventitious shoot regeneration from in vitro-cultured leaves of Rubusgenotypes. Plant Cell Tissue Organ Culture, 38:11-17. [Google Scholar]
  49. Vaca, I. & Landázuri. y P. (2013). Evaluación de tres niveles de nitrógeno en medio de cultivo, en   las   fases   de   enraizamiento   in   vitro   y adaptación   a   sustrato   de   Rubus   glaucus (Benth). La Granja. Revista de Ciencias de la Vida, 18(2):48-54. [Google Scholar]
  50. Villa, F., Pasqual, M., Asis, F.A., Las P. & Assis, G. A. (2007). In vitro blackberry growing: Effect of growth regulators and cultivar. Ciencia e Agrotecnologia 32:1754-1759. [Google Scholar]
  51. Vujovic ́, T., Ružic ́, D., Cerovic ́, R., Leposavic ́, A., Karaklajic ́-Stajic ́, Z., Mitrovic ́, O., Žurawicz, E. (2017). An assessment of the genetic integrity of micropropagated raspberry and blackberry plants. Sci. Hortic. 225, 454–461. [Google Scholar]
  52. Wainwright, H. & Flegmann, A.W. (1986). Studies of the micropropagation of Ribes species. Acta Horticulturae, 183:315-322. [Google Scholar]
  53. Wei, J., Gu Zhen, Y. & Zhi S. (1992). In vitro propagation of Rubus species. Scientia Horticulturae, 49, 3–4, 335-340. [Google Scholar]
  54. Wu, J.H., Miller, S.A., Hall, H.K, & Mooney, P.A. (2009). Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell Tissue Organ Culture 99:17-25. [Google Scholar]
  55. Zarei, A., Erfani-Moghadam, J.  &   Mozaffari. M.  (2017).   Phylogenetic   analysis   among   some   pome    fruit    trees    of    Rosaceae    family    using   RAPD   markers.   Biotechnology   &   Biotechnological Equipment, 31(2):289-298. [Google Scholar]
  56. Zawadzka, M. & Orlikowska, T. (2006). The influence of Fe EDDHA in red raspberry cultures during shoot multiplication and adventitious regeneration from leaf explants. Plant Cell Tissue Organ Culture, 85:45-149. [Google Scholar]