- Al-Shehbaz, I.A. Transfer of most North American species of Arabis to Boechera (Brassicaceae). Novon 2003, 13(4), 381-391. [Google Scholar]
- Anderson, J. T.; Perera, N.; Chowdhury, B.; Mitchell-Olds, T. Microgeographic patterns of genetic divergence and adaptation across environmental gradients in Boechera stricta (Brassicaceae). The American Naturalist 2015, 186, 60-73. [Google Scholar]
- Asker S.E.; Jerling L. Apomixis in Plants. 1992, CRC Press, Boca Raton. [Google Scholar]
- Baumbusch, L. O.; Thorstensen, T.; Krauss, V.; Fischer, A.; Naumann, K.; Assalkhou, R.; ... & Aalen, R. B. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res. 2001, 29(21), 4319-4333. [Google Scholar]
- Boisnard-Lorig, C.; Colon-Carmona, A.; Bauch, M.; Hodge, S.; Doerner, P.; Bancharel, E.; ... & Berger, F. (2001). Dynamic analyses of the expression of the HISTONE: YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. The Plant Cell 2001, 13(3), 495-509. [Google Scholar]
- Carman J. G. Asynchronous Expression of Duplicate Genes in Angiosperms May Cause Apomixis, Bispory, Tetraspory, and Polyembryony. Biol. J. Linn. Soc. 1997, 61, 51-94. [Google Scholar]
- Dobeš, C.; Mitchell‐Olds, T.; Koch, M. A. Intraspecific diversification in North American Boechera stricta (= Arabis drummondii), Boechera× divaricarpa, and Boechera holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers—an integrative approach. Am. J. Bot. 2004, 91(12), 2087-2101. [Google Scholar]
- Edgar R.C. MUSCLE : multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5), 1792–1797. [Google Scholar]
- Gasteiger E.; Hoogland C.; Gattiker A.; Duvaud S.; Wilkins M.R.; Appel R.D.; Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook. Humana Press, 2005, Hatfield. 571–607. [Google Scholar]
- Gehring M.; Huh J.H.; Hsieh T.; Penterman J.; Choi Y.; Harada J.J.; Goldberg R.B.; Fischer R.L. DEMETER DNA Glycosylase Establishes MEDEA Polycomb Gene Self-Imprinting by Allele-Specific Demethylation. Cell 2006, 124, 495-506. [Google Scholar]
- Gehring M.; Bubb K. L.; Henikoff S. Extensive Demethylation of Repetitive Elements During Seed Development Underlies Gene Imprinting. Science 2009, 324; 1447-1451. [Google Scholar]
- Gehring M.; Missirian V.; Henikoff S. Genomic Analysis of Parent-of-Origin Allelic Expression in Arabidopsis thaliana Seeds. PLoS ONE 2011, 6 (8), e23687. [Google Scholar]
- Goodstein, D. M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R. D.; Fazo, J.; ... Rokhsar, D. S. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012, 40(1), 1178-1186. [Google Scholar]
- Grimanelli, D.; García, M.; Kaszas, E.; Perotti, E.; Leblanc, O. Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 2003, 165(3), 1521-1531. [Google Scholar]
- Grossniklaus, U.; Spillane, C.; Page, D. R.; Köhler, C. Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin in Plant Biol. 2001, 4(1), 21-27. [Google Scholar]
- Haig, D.; Westoby, M. Parent-specific gene expression and the triploid endosperm. The American Naturalist 1989, 134(1), 147-155. [Google Scholar]
- Hanna W. W.; Bashaw E. C. Apomixis: Its Identification and Use in Plant Breeding. Crop Sci. 1987, 27(6), 1136-1139. [Google Scholar]
- Huh, J. H.; Rim, H. J. DNA demethylation and gene imprinting in flowering plants. In Epigenetic Memory and Control in Plants, 2013, (pp. 201-232). Springer, Berlin, Heidelberg. [Google Scholar]
- Hsieh, T. F.; Ibarra, C. A.; Silva, P.; Zemach, A.; Eshed-Williams, L.; Fischer, R. L.; Zilberman, D. Genome-wide demethylation of Arabidopsis endosperm. Science 2009, 324(5933), 1451-1454. [Google Scholar]
- Hsieh T.; Shin J.; Uzawa R.; Silva P.; Cohen S.; Bauer M.J.; Hashimoto M.; Kirkbride R.C.; Harada J.J.; Zilberman D.; Fischer R. L. Regulation of imprinted gene expression in Arabidopsis endosperm. Plant Biol. 2011, 108: 1755-1762. [Google Scholar]
- Ingelbrecht, I.; Van Houdt, H.; Van Montagu, M.; Depicker, A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. P. Natl. A. Sci. 1994, 91(22), 10502-10506. [Google Scholar]
- Jeong, C. W.; Park, G. T.; Yun, H.; Hsieh, T. F.; Choi, Y. D.; Choi, Y.; Lee, J. S. Control of paternally expressed imprinted UPWARD CURLY LEAF1, a gene encoding an F-box protein that regulates CURLY leaf polycomb protein, in the Arabidopsis endosperm. PloS ONE 2015, 10(2), e0117431. [Google Scholar]
- Johnson, L. M.; Bostick, M.; Zhang, X.; Kraft, E.; Henderson, I.; Callis, J.; Jacobsen, S. E. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr. Biol. 2007, 17(4), 379-384. [Google Scholar]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; ... & Drummond, A. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28(12), 1647-1649. [Google Scholar]
- Koch, M. A.; Dobeš, C.; Mitchell-Olds, T. Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol, Biol, Evol. 2003, 20(3), 338-350. [Google Scholar]
- Koltunow, A. M.; Bicknell, R. A.; Chaudhury, A. M. Apomixis: Molecular Strategies for the Generation of Genetically ldentical Seeds without Fertilization. Plant Physiol. 1995, 108: 1345-1352. [Google Scholar]
- Kradolfer, D.; Wolff, P.; Jiang, H.; Siretskiy, A.; Köhler, C. An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev. Cell 2013, 26(5), 525-535. [Google Scholar]
- Lafon-Placette, C.; Hatorangan, M. R.; Steige, K. A.; Cornille, A.; Lascoux, M.; Slotte, T.; Köhler, C. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nat. Plants 2018, 4(6), 352-357. [Google Scholar]
- Lee, CR.; Wang, B.; Mojica, J. et al. Young inversion with multiple linked QTLs under selection in a hybrid zone. Nat Ecol Evol 2017, 1, 0119. https://doi.org/10.1038/s41559-017-0119. [Google Scholar] [Crossref]
- Lescot, M.; Dehais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van der Peer, Y.; Rouze, P.; Rombauts, S. PlantCARE , a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30 (1), 325–327. [Google Scholar]
- Li, Ming. Identification and Expression Analyses of Genes involved in Early Endosperm Development in Arabidopsis and Cereals. Doctoral thesis, School of Agriculture, Food and Wine, The University of Adelaide, 2011, 10. [Google Scholar]
- Luo, M.; Bilodeau, P.; Dennis, E. S.; Peacock, W. J.; Chaudhury, A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. PNAS 2000, 97 (19), 10637–10642. [Google Scholar]
- Luo, M.; Taylor, J. M.; Spriggs, A.; Zhang, H.; Wu, X.; Russell, S.; … Koltunow, A. A Genome-Wide Survey of Imprinted Genes in Rice Seeds Reveals Imprinting Primarily Occurs in the Endosperm. PLoS Genetics 2011, 7(6), e1002125. doi:10.1371/journal.pgen.1002125. [Google Scholar] [Crossref]
- Matzk, F.; Meister, A.; Schubert, I. An efficient screen for reproductive pathways using mature seeds of monocots and dicots. The Plant Journal 2000, 21(1), 97-108. [Google Scholar]
- Matzk, F.; Meister, A.; Brutovská, R.; Schubert, I. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. The Plant Journal 2001, 26(3), 275-282. [Google Scholar]
- Mette, M. F.; Aufsatz, W.; van der Winden, J.; Matzke, M. A.; Matzke, A. J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. 2000 2;19(19),5194-201. doi: 10.1093/emboj/19.19.5194. PMID: 11013221; PMCID: PMC302106. [Google Scholar] [Crossref]
- Park, K.; Kim, M. Y.; Vickers, M.; Park, J. S.; Hyun, Y.; Okamoto, T.; ... & Scholten, S. DNA demethylation is initiated in the central cells of Arabidopsis and rice. P. Natl. A. Sci. 2016, 113(52), 15138-15143. [Google Scholar]
- Paszkowski, J.; Whitham, S. A. Gene silencing and DNA methylation processes. Curr. Opin. in Plant Biol. 2001, 4(2), 123-129. [Google Scholar]
- Pellino, M.; Sharbel, T.F.; Mau, M. et al. Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera. BMC Res Notes 2011, 4, 303. https://doi.org/10.1186/1756-0500-4-303. [Google Scholar] [Crossref]
- Rodríguez‐Negrete, E.; Lozano‐Durán, R.; Piedra‐Aguilera, A.; Cruzado, L.; Bejarano, E. R.; Castillo, A. G. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol. 2013, 199(2), 464-475. [Google Scholar]
- Satish, M.; Nivya, M. A.; Abhishek, S.; Nakarakanti, N. K.; Shivani, D.; Vani, M. V.; Rajakumara, E. Computational characterization of substrate and product specificities, and functionality of S‐adenosylmethionine binding pocket in histone lysine methyltransferases from Arabidopsis, rice and maize. Proteins: Structure, Function, and Bioinformatics 2018, 86(1), 21-34. [Google Scholar]
- Schranz M.E.; Dobes C.; Koch M.A.; Mitchell-Olds T. Sexual Reproduction, Hybridization, Apomixis, and Polyploidization in the Genus Boechera (Brassicaceae). Am, J. Bot. 2005, 92(11), 1797-1810. [Google Scholar]
- Scott R.J.; Spielman M.; Bailey J.; Dickinson H.G. Parent-of-origin Effects on Seed Development in Arabidopsis thaliana. Development 1998, 125, 3329-3341. [Google Scholar]
- Spielman M.; Vinkenoog R.; Scott R.J. Genetic Mechanisms of Apomixis. Philos. T. R. Soc. Lond. 2003. 358: 1095-1103. [Google Scholar]
- Spillane, C.; Steimer, A.; Grossniklaus, U. Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 2001, 14, 179–187. https://doi.org/10.1007/s00497-001-0117-1. [Google Scholar] [Crossref]
- Taşkin, K. M.; Özbilen, A.; Sezer, F.; Hürkan, K.; Güneş, Ş. Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species. Comput. Biol. Chem. 2017, 67, 15-21. [Google Scholar]
- Thorstensen, T.; Grini, P. E.; Aalen, R. B. SET domain proteins in plant development. BBA-Gene Regul. Mech. 2011, 1809(8), 407-420. [Google Scholar]
- Tuteja, R.; McKeown, P. C.; Ryan, P.; Morgan, C. C.; Donoghue, M. T.; Downing, T., ... & Spillane, C. Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol. Biol. Evol. 2019, 36(6), 1239-1253. [Google Scholar]
- Vinkenoog, R.; Scott, R. J. Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? Sex. Plant Reprod. 2001, 14(4), 189-194. [Google Scholar]
- Vinkenoog, R.; Bushell, C.; Spielman, M.; Adams, S.; Dickinson, H. G.; Scott, R. J. Genomic imprinting and endosperm development in flowering plants. Mol. Biotechnol. 2003, 25(2), 149-184. [Google Scholar]
- Wolff, P.; Jiang, H.; Wang, G.; Santos-Gonzalez, J.; Köhler, C. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. Elife 2015, 4, e10074. [Google Scholar]
- Wollmann, H.; Berger, F. Epigenetic reprogramming during plant reproduction and seed development. Curr Opin. Plant Biol. 2012, 15(1), 63-69. [Google Scholar]
- Xiao, X.; Zhang, J.; Li, T.; Fu, X.; Satheesh, V.; Niu, Q.; ... & Lei, M. A group of SUVH methyl‐DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr Plant Biol. 2019, 61(2), 110-119. [Google Scholar]
- Yu C.; Chen Y.; Lu C.; Hwang J. Prediction of Protein Subcellular Localization. PROTEINS: Structure, Function, and Bioinformatics 2006, 64, 643–651. [Google Scholar]
- Zhang M.; Zhao H.; Xie S.; Chen J.; Xu Y.; Wang K.; Zhao H.; Guan H.; Hu X.; Jiao Y.; Song W.; Lai J. Extensive, Clustered Parental Imprinting of Protein-Coding and Noncoding RNAs in Developing Maize Endosperm. PNAS 2011, 108(50), 20042-20047. [Google Scholar]
|