- Al Lawati, A. H., Nadaf, S. K., AlSaady, N. A., Al Hinai, S. A., Almamari, A. R., & Al Maawali, A. A. (2021). Genetic diversity of Omani barley (Hordeum vulgare L.) germplasm. Open Agriculture, 6(1), 628-639. [Google Scholar]
- Ali, Z., Khan, A. S., & Asad, M. A. (2002). Salt tolerance in bread wheat: Genetic variation and heritability for growth and ion relation. Asian Journal of Plant Sciences, 1, 420-422. [Google Scholar]
- Amabile, R. F., Faleiro, F. G., Capettini, F., Peixoto, J. R., & Sayd, R. M. (2017). Genetic variability in elite barley genotypes based on the agro-morphological characteristics evaluated under irrigated system. Ciência e Agrotecnologia, 41, 147-158. [Google Scholar]
- Anonymous, (2011). SPSS IBM Corp. SPSS Statistics for Windows; Version 20.0.; Released 2011; SPSS: Armonk, NY, USA, 2011. [Google Scholar]
- Chaudhary, J., Deshmukh, R., & Sonah, H. (2019). Mutagenesis approaches and their role in crop improvement. Plants, 8(11):467. [Google Scholar]
- Deniz, B. (2007). Selection for yield and earliness in mutated genotypes of spring barley (Hordeum vulgare) in cool and short‐season environments. New Zealand Journal of Crop and Horticultural Science, 35(4), 441-447. [Google Scholar]
- Johnson, H. W., Robinson, H. F., & Comstock, R. E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy journal, 47(7), 314-318. [Google Scholar]
- Kato, H., Li, F., & Shimizu, A. (2020). The selection of gamma-ray irradiated higher yield rice mutants by directed evolution method. Plants, 9(8), 1004. [Google Scholar]
- Khodadadi, M., Fotokian, M. H., & Miransari, M. (2011). Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Science, 5(1), 17-24. [Google Scholar]
- Kumar, Y., Niwas, R., Nimbal, S., & Dalal, M. S. (2020). Hierarchical cluster analysis in barley genotypes to delineate genetic diversity. Electronic Journal of Plant Breeding, 11(03), 742-748. [Google Scholar]
- Laghari, K. A., Sial, M. A., Arain, M. A., Khanzada, S. D., & Channa, S. A. (2012). Evaluation of stable wheat mutant lines for yield and yield associated traits. Pakistan Journal of Agriculture, Agriculture Engineering, Veterinary Sciences, 28(2), 124-130. [Google Scholar]
- Malek, M. A., Rafii, M. Y., Afroz, S. S., Nath, U. K., & Mondal, M. (2014). Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants. The Scientific World Journal, 2014. [Google Scholar]
- Newton, A. C., Flavell, A. J., George, T. S., Leat, P., Mullholland, B., Ramsay, L., Revoredo-Giha C., Russell J., Steffenson B. J., Swanston J. S., Thomas W. T. B., Waugh R., White P. J. & Bingham, I. J. (2011). Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food security, 3(2), 141-178. [Google Scholar]
- Ohnoutkova, L. (2019). Mutation breeding in barley: Historical overview. In W.A., Harwood (Ed.). Barley (pp. 7-19). New York, NY: Humana Press. [Google Scholar]
- Öztürk, İ., Şen, A., Kiliç, T. H., & Şili Ş. (2020). Selection of advanced mutant wheat (Triticum aestivum L.) lines based on yield and quality parameters. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 87-95. [Google Scholar]
- Singh, B. D. (2001). Plant Breeding: Principles and Methods (6th Ed.). New Delhi, India: Kalyani Publishers. [Google Scholar]
- Singh, R. K. & Chaudhary, B. D. (1985). Biometrical Methods in Quantitative Analysis. New Delhi, India: Kalayani Publishers. [Google Scholar]
|