International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Research article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2021, Vol. 5(2) 213-220

The Effect of Gadolinium and Lanthanum on the Mortality of Daphnia magna

Volkan Korkmaz, Gokhan Onder Erguven, Numan Yildirim & Nuran Cıkcıkoğlu Yıldırım

pp. 213 - 220   |  DOI: https://doi.org/10.29329/ijiaar.2021.358.6

Publish Date: June 30, 2021  |   Single/Total View: 95/517   |   Single/Total Download: 132/866


Abstract

Rare earth elements (REEs) have been recently identified as emergent contaminants because of their numerous and increasing applications in technology. The impact of REEs on downstream ecosystems, notably aquatic organisms, is of particular concern, but has to date been largely overlooked. The purpose of this study were to generate toxicological information regarding these poorly studied Gadolinium and Lanthanum elements to determine the current risk associated with these elements. The results of this work indicate a notable D. magna mortality in high concentration of La and Gad. The findings from our study also indicate that Gad is more toxic than La. Due to this mortality effect of La and Gad to D. magna, it will be important for the ensuring continuity of the ecosystem to monitor especially aquatic environments and to treat them with appropriate treatment methods from contaminated environments.

Keywords: Gadolinium, Lanthanum, D. magna, Mortality.


How to Cite this Article?

APA 7th edition
Korkmaz, V., Erguven, G.O., Yildirim, N., & Yildirim, N.C. (2021). The Effect of Gadolinium and Lanthanum on the Mortality of Daphnia magna. International Journal of Innovative Approaches in Agricultural Research, 5(2), 213-220. https://doi.org/10.29329/ijiaar.2021.358.6

Harvard
Korkmaz, V., Erguven, G., Yildirim, N. and Yildirim, N. (2021). The Effect of Gadolinium and Lanthanum on the Mortality of Daphnia magna. International Journal of Innovative Approaches in Agricultural Research, 5(2), pp. 213-220.

Chicago 16th edition
Korkmaz, Volkan, Gokhan Onder Erguven, Numan Yildirim and Nuran Cikcikoglu Yildirim (2021). "The Effect of Gadolinium and Lanthanum on the Mortality of Daphnia magna". International Journal of Innovative Approaches in Agricultural Research 5 (2):213-220. https://doi.org/10.29329/ijiaar.2021.358.6

References
  1. Babu, S.S., Mohandass, C., Vijayaraj, A.S., Dhale, M.A. (2015). Detoxification and color removal of Congo Red by a novel Dietzia sp.(DTS26)–a microcosm approach. Ecotoxicology and Environmental Safety, 114, 52–60. [Google Scholar]
  2. [Google Scholar]
  3. Bustamente, P., Miramand, P. (2005). Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Science of The Total Environment, 337(1-3), 59-73. [Google Scholar]
  4. Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schäfer, J., Zimmermann, S. (2015). COST action TD1407: Network on technology- critical elements (NOTICE)—from environmental processes to human health threats. Environmental Science and Pollution Research, 22, 15188–15194. [Google Scholar]
  5. Connon, R.E., Geist, J., Werner, I. (2012). Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors, 12(9), 12741–12771. [Google Scholar]
  6. Cui, Ja, Zhang, Z., Bai, W., Zhang, L., He, X., Ma, Y., Liu, Y., Chai, Z. (2012). Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. Journal of Environmental Sciences, 24(2), 209–213. [Google Scholar]
  7. Freitas, R., Cardoso, C.E.D., Costa, S., Morais, T., Moleiro, P., Lima, A.F.D., Soares, M., Figueiredo, S., Agueda, T.L., Rocha, P., Amador, G., Soares, A., Pereira, E. (2020). New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. Environmental Pollution, 260, 113859. [Google Scholar]
  8. Fujiwara, K., Matsumoto, Y., Kawakami, H., Aoki, M., Tuzuki, M. (2008). Evaluation of metal toxicity in chlorella kessleri from the perspective of the periodic table. Bulletin of the Chemical Society of Japan, 51(4), 478-488. [Google Scholar]
  9. González V., Vignati D.A.L., Pons M.N., Pelletier E.M., Bojic C., Giamberini L. (2015). Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environmental Pollution, 199, 139-147. [Google Scholar]
  10. Gonzalez, V., Vignati, D.A.L., Leyval, C., Giamberini, L. (2014). Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environment International, 71, 148–157. [Google Scholar]
  11. Greenwood, N.N., Earnshaw, A. (1997). Chemistry of the Elements, second ed. Elsevier, Reed Educational and Professional Publishing, Ltd., Woburn. [Google Scholar]
  12. Holden, E., Coplen, T. (2004). The periodic table of the elements. Chem International, 26(1), 8–9. [Google Scholar]
  13. Jin, X., Chu, Z., Yan, F., Zen, Q. (2009). Effects of lanthanum(III) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Limnologica, 39(1), 86–93. [Google Scholar]
  14. Li J., Li H., Lin D., Li M., Wang Q., Xie S., Zhang Y., Liu F. (2021). Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses. Journal of Hazardous Materials, 404, (Part B), 124030. [Google Scholar]
  15. Lİ H., Wang P., Lin G., Huang J. (2021). The role of rare earth elements in biodegradable metals: A review. Acta Biomaterialia, https://doi.org/10.1016/j.actbio.2021.05.014 [Google Scholar] [Crossref] 
  16. Liu, Z., Cai, M., Wu, D., Yu, P., Jiao, Y., Jiang, Q., Zhao, Y. (2020). Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations. Environmental Pollution, 256, 113506. [Google Scholar]
  17. Rainbow, S.R. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120(3), 497-507. [Google Scholar]
  18. Sousa, A.P., Nunes, B. (2020). Standard and biochemical toxicological effects of zinc pyrithione in Daphnia magna and Daphnia longispina, Environmental Toxicology and Pharmacology, 80, 103402. [Google Scholar]
  19. Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K., Ślaska, B. (2021). Daphnia magna model in the toxicity assessment of pharmaceuticals: A review, Science of the Total Environment, 763, 143038. [Google Scholar]
  20. Verplanck, P.L., Antweiler, R.C., Nordstrom, D.K., Taylor, H.E. (2001). Standard reference water samples for rare earth element determinations. Applied Geochemistry, 16(2), 231–244. [Google Scholar]
  21. Willbold, E., Gu, X., Albert, D., Kalla, K., Bobe, K., Brauneis, M., Janning, C., Nellesen, J., Czayka, W., Tillmann, W., Zheng, Y., Witte, F. (2015). Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomaterialia, 11, 554-562. [Google Scholar]
  22. Wolterbeek, H.T., Verburg, T.G. (2001). Predicting metal toxicity revisited: generalproperties vs. specific effects. Science of The Total Environment, 279(1-3), 87-115. [Google Scholar]
  23. Zhou, P.-J., Lin, J., Shen, H., Li, T., Song, L.-R., Shen, Y.-W., Liu, Y.- D. (2004). Kinetic studies on the combined effects of lanthanum and cerium on the growth of Microcystis aeruginosa and their accumulation by M. aeruginosa. Bulletin of Environmental Contamination and Toxicology, 72, 711–716. [Google Scholar]