- Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E. & Wagentristl, H. (2007a). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol., 98, 3204–3212. doi: 10.1016/j.biortech.2006.07.007 [Google Scholar] [Crossref]
- Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, V., Mayer, K.& Gruber, L. (2007b). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, 118, 173–182. [Google Scholar]
- Andersen, L.F., Parsin, S.,Lüdtke, O. & Kaltschmitt, M. (2020). Biogas production from straw—the challenge feedstock pretreatment. Biomass Conv. Bioref.,. https://doi.org/10.1007/s13399-020-00740-y [Google Scholar] [Crossref]
- Barbanti, L., Di Girolamo, G., Grigatti, M., Bertin, L.& Ciavatta, C. (2014). Anaerobic digestion of annual and multi-annual biomass crops. Ind. Crop. Prod., 56, 137–144. https://doi.org/10.1016/j.indcrop.2014.03. 002 [Google Scholar] [Crossref]
- Battini, F., Agostini, A., Boulamanti, A.K., Giuntoli, J. & Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ., 481, 196–208. [Google Scholar]
- Schulz , V., Munz, S., Stolzenburg , K., Jens Hartung , Weisenburger , S., Mastel , K., Möller, K., Claupein, V. & Graeff-Hönninger, S. (2018). Biomass and Biogas Yield of Maize (Zea mays L.) Grown under Artificial Shading. Agriculture, 8(11), 178. doi:10.3390/agriculture8110178FAO. The Contribution of Agriculture to Greenhouse Gas Emissions; FAO: Rome, Italy, 2020 [Google Scholar] [Crossref]
- Franco, M., Hurme, T., Winquist, E. & Rinne, M. (2019). Grass silage for biorefinery—A meta‐analysis of silage factors affecting liquid–solid separation. Grass and Forage Science, 74 (2), 218-230. doi10.1111/gfs.12421, [Google Scholar]
- Herrmann, A. (2013). Biogas production from maize: Current state, challenges and prospects. 2. Agronomic and environmental aspects. Bioenergy Res., 6, 372–387.https://doi.org/10.2298/GENSR2003055P [Google Scholar] [Crossref]
- Hutňan, M. (2016). Maize Silage as Substrate for Biogas Production. In Advances in Silage Production and Utilization, EDs T.De Silva and M. Santos, eBook (PDF) ISBN: 978-953-51-4151-8, DOI: 10.5772/64378 [Google Scholar]
- Ikanović, J., Popović,V., Rakaščan, N., Janković, S., Živanović, Lj., Kolarić, Lj., Mladenović Glamočlija, M. & Dražić,G. (2020). Genotype and Environment Effect of Soybean Production and Biogas. GEA (Geo Eco-Eco Agro) International Conference, 28-31 May 2020, Montenegro - Book of Proceedings, 280-288, in Advances in Silage Production and Utilization, 173- 196, Edited by Thiago Da Silva, Intech Open, ISBN: 978-953-51-4151-8. DOI: 10.5772/64378 [Google Scholar]
- Krzystek, L., Wajszczuk, K.,Pazera, A., Matyka, M, Slezak, R. & Ledakowicz, S.(2020). The Infuence of Plant Cultivation Conditions on Biogas Production: Energy Efciency, Waste and Biomass Valorization, 11,513–523. https://doi.org/10.1007/s12649-019-00668-z [Google Scholar] [Crossref]
- Kulichkova, G., Ivanova, T., Köttner, M., Volodko, O., Spivak, S., Tsygankov, S. Blume, Y., Zlateva, P.& Dimitrov, R. (2021). An analysis of the potential use of waste materials for biogas plant development. OP Conf. Ser.: Mater. Sci. Eng. 1031 012012 [Google Scholar]
- Lansche, J. & Müller, J. (2012). Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Eng. Life Sci., 12, 313–320. [Google Scholar]
- Meyer-Aurich, A.,Lochmann, Y., Klauss, H., & Prochnow, A. (2016).Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation. Sustainability, 8, 617. doi:10.3390/su8070617 [Google Scholar] [Crossref]
- Milanović, T., Popović, V., Vučković, S., Popović, S., Rakaščan, N. & Petković Z. (2020): Analysis of soybean production and biogas yield to improve eco-marketing and circular economy.Economics of Agriculture, Belgrade, 67 (1): 50-60. [Google Scholar]
- Neshat, S. A., Mohammadi, M., Najafpour, G. D. & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production, Renewable and Sustainable Energy Reviews, 79, 308-322. doi.org/10.1016/j.rser.2017.05.137 [Google Scholar]
- Ning, T., Zheng, Y., Han, H., Jiang, G., & Li, Z. (2012). Nitrogen uptake, biomass yield and quality of intercropped spring-and summer-sown maize at different nitrogen levels in the North China Plain. Biomass Bioenergy, 47,91–98. https://doi.org/10.1016/j.biombioe.2012.09. 059 [Google Scholar] [Crossref]
- Oleszek, M.& Matyka, M. (2020). Energy Use Efficiency of Biogas Production Depended on Energy Crops, Nitrogen Fertilization Level, and Cutting System. BioEnergy Research, 13 (4) https://doi.org/10.1007/s12155-020-10147-2 [Google Scholar] [Crossref]
- Ormaechea, P., Castrillon, L., SuÃrez, B., Megido, L., Fernández, Y., Negral, L., Marañon, E.& RodrÃguez-Iglesias, J. (2018). Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM. Renewable Energy, 12610.1016/j.renene.2018.04.022 [Google Scholar]
- Pastorelli, R., Valboa, G., Lagomarsino, A., Fabiani, A., Simoncini, S.; Zaghi, M. &Vignozzi, N. (2021). Recycling Biogas Digestate from Energy Crops: Effects on Soil Properties and Crop Productivity. Appl. Sci. 11, 750. https://doi.org/10.3390/app11020750 [Google Scholar] [Crossref]
- Popovic, V., Vidic, M., Vuckovic, S., Drazic, G., Ikanovic, J., Djekic, V. &Filipovic, V. (2015). Determining genetic potential and quality components of NS soybean cultivars under different agroecological conditions.Romanian Agriculture Research, 32,35-45. [Google Scholar]
- Popović, V., Vučković, S., Jovović, J., Rakašćan, N., Kostić, M., Ljubičić, N., Mladenović-Glamočlija, M. & Ikanović, J. (2020). Genotype by year interaction effects on soybean morpho-productive traits and biogas production. Genetika, 52(3), 1055-1073. [Google Scholar]
- Rakašćan, N., Popović, V., Ikanović, J., Janković, S., Dražić, G., Lakić, Ž. & Živanović, Lj. (2020). Wheat Straw in the Function of Obtaining Animal Feed and Biofuel. EC Veterinary Science, 5(12), 21-29. [Google Scholar]
- Rakašćan, N., Drazić, G., Popović, V., Milovanović, J., Zivanović, Lj., Aćimić Remikovic, M., Milanovic, T., Ikanovic, J. (2021). Effect of digestate from anaerobic digestion on Sorghum bicolor L. production and circular economy. Not Bot Horti Agrobo, 49(1),12270 [Google Scholar]
- https://www.notulaebotanicae.ro/index.php/nbha/article/view/12270Strauß, C., Herrmann, C., Weiser, C., Kornatz, P., Heiermann, M., Aurbacher, J., Müller, J. & Vetter, A. (2019). Can Energy Cropping for Biogas Production Diversify Crop Rotations? Findings from a Multi-Site Experiment in Germany. Bioenerg. Res., 12, 123–136. https://doi.org/10.1007/s12155-019-9960-5 [Google Scholar] [Crossref]
- Sukhesh, M. J. & Rao, P.W. (2018). Anaerobic digestion of crop residues: Technological developments and environmental impact in the Indian context. Biocatalysis and Agricultural Biotechnology, 513–528. https://doi.org/10.1016/j.bcab.2018.08.007 [Google Scholar] [Crossref]
- Thomas, H.L., Pot, D., Latrille, E., Trouche, G., Bonnal, L., Bastianelli, D. & Carrère, H. (2019). Sorghum Biomethane Potential Varies with the Genotype and the Cultivation Site. Waste Biomass Valor. 10, 783–788. https://doi.org/10.1007/s12649-017-0099-3 [Google Scholar] [Crossref]
- Turkmen, B.A. (2020). Renewable Energy Applications for Sustainable Agricultural Systems . International Journal of Innovative Approaches in Agricultural Research, 4(4), 497-504. doi: 10.29329/ijiaar.2020.320.11 [Google Scholar] [Crossref]
- Vasileva, V. & Vasilev, E. (2020). Agronomic characterization and the possibility for potential use of subterranean clover (Trifolium subterraneum L.) In the forage production in Bulgaria. Pak. J. Bot., 52(2), 565-568. DOI: http://dx.doi.org/10.30848/PJB2020-2(26) [Google Scholar]
- Weiland, P. (2010). Biogas production: current state and perspectives. Appl Microbiol Biotechnol, 85, 849–860. DOI 10.1007/s00253-009-2246-7 [Google Scholar]
- Xiang, C., Tian, D., Wang, W., Shen, F., Zhao, G., Ni, X., Zhang, Y., Yang, G. & Zeng, Y. (2020). Fates of Heavy Metals in Anaerobically Digesting the Stover of Grain Sorghum Harvested from Heavy Metal-Contaminated Farmland. Waste and Biomass Valorization, 11, 1239–1250. https://doi.org/10.1007/s12649-018-0455-y [Google Scholar] [Crossref]
- Yadav, P., Priyanka P., Kumar D., Yadav A.& Yadav K. (2019). Bioenergy Crops: Recent Advances and Future Outlook. In: Rastegari A., Yadav A., Gupta A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-14463-0_12 [Google Scholar] [Crossref]
- Zlateva, P. & Dimitrov, R. (2021). An analysis of the potential use of waste materials for biogas plant development. IOP Conf. Series: Materials Science and Engineering, 1031, 012012, doi:10.1088/1757-899X/1031/1/012012 [Google Scholar] [Crossref]
|