International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article | International Journal of Innovative Approaches in Agricultural Research 2021, Vol. 5(2) 230-240

Agri-energy Crops for Biogas Production Regimes

Gordana Drazic, Nikola Rakašćan & Nikola Dražić

pp. 230 - 240   |  DOI:

Published online: June 30, 2021  |   Number of Views: 6  |  Number of Download: 23


The most significant challenges posed to agriculture are connecting multiple segments in a sustainable way that includes resource and energy efficiency as well as environmental protection through the rational use of limited resources. One way is to use field crop biomass as a feedstock for biogas production in the process of anaerobic digestion. Codigestion of manure and energy crops biomass reduces the impact on the environment primarily through reducing greenhouse gas emissions during the entire life cycle of the plant. Energy crops should meet the basic conditions: efficient conversion of solar energy in the process of photosynthesis that allows high yields, low requirements for nutrients and water due to a well-developed root system, low requirements for agronomic measures, low cost of establishing and maintaining plantations. The main factors that determine the biogas yields are the type and variety of crops, harvest time, method of storage and pretreatment before AD conversion and nutrient content. The most used field crops are maize (silage, grain), sorghum (fodder and sveet) due to their high potential for methane production and mature technologies. Lignocellulosic biomass of field residues of field crops or originating from purpose-grown perennial crops such as switchgrass, miscanthus, reed canary grass, Napier grass has significant environmental advantages but also technological limitations (pre-treatment is necessary). The success and future potential for the role of biogas technologies in integrated infrastructures providing bioenergy, biomethane for static and mobile applications, bio-CO2, and even play a key role in the circular economy by recycling nutrients back into the land through the use of digestate which is by-product as soil amendment in energy crops production chan.

Keywords: anaerobic digestion, bioeconomy, biomass, sustainability

How to Cite this Article?

APA 6th edition
Drazic, G., Rakašćan, N. & Dražić, N. (2021). Agri-energy Crops for Biogas Production Regimes . International Journal of Innovative Approaches in Agricultural Research, 5(2), 230-240. doi: 10.29329/ijiaar.2021.358.8

Drazic, G., Rakašćan, N. and Dražić, N. (2021). Agri-energy Crops for Biogas Production Regimes . International Journal of Innovative Approaches in Agricultural Research, 5(2), pp. 230-240.

Chicago 16th edition
Drazic, Gordana, Nikola Rakašćan and Nikola Dražić (2021). "Agri-energy Crops for Biogas Production Regimes ". International Journal of Innovative Approaches in Agricultural Research 5 (2):230-240. doi:10.29329/ijiaar.2021.358.8.

  1. Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E. & Wagentristl, H. (2007a). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol., 98, 3204–3212. doi: 10.1016/j.biortech.2006.07.007 [Google Scholar] [Crossref] 
  2. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, V., Mayer, K.& Gruber, L. (2007b). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, 118, 173–182. [Google Scholar]
  3. Andersen, L.F., Parsin, S.,Lüdtke, O. & Kaltschmitt, M.  (2020). Biogas production from straw—the challenge feedstock pretreatment. Biomass Conv. Bioref.,. [Google Scholar] [Crossref] 
  4. Barbanti, L., Di Girolamo, G., Grigatti, M., Bertin, L.& Ciavatta, C. (2014). Anaerobic digestion of annual and multi-annual biomass crops. Ind. Crop. Prod., 56, 137–144. 002 [Google Scholar] [Crossref] 
  5. Battini, F., Agostini, A., Boulamanti, A.K., Giuntoli, J. & Amaducci, S. (2014). Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ., 481, 196–208. [Google Scholar]
  6. Schulz , V., Munz, S., Stolzenburg , K., Jens Hartung , Weisenburger , S., Mastel , K., Möller, K., Claupein, V. &  Graeff-Hönninger, S.  (2018). Biomass and Biogas Yield of Maize (Zea mays L.) Grown under Artificial Shading. Agriculture, 8(11), 178. doi:10.3390/agriculture8110178FAO. The Contribution of Agriculture to Greenhouse Gas Emissions; FAO: Rome, Italy, 2020 [Google Scholar] [Crossref] 
  7. Franco, M., Hurme, T., Winquist, E. &   Rinne, M. (2019). Grass silage for biorefinery—A meta‐analysis of silage factors affecting liquid–solid separation. Grass and Forage Science, 74 (2), 218-230. doi10.1111/gfs.12421,  [Google Scholar]
  8. Herrmann, A. (2013). Biogas production from maize: Current state, challenges and prospects. 2. Agronomic and environmental aspects. Bioenergy Res., 6, 372–387. [Google Scholar] [Crossref] 
  9. Hutňan, M. (2016). Maize Silage as Substrate for Biogas Production. In  Advances in Silage Production and Utilization, EDs T.De Silva and M. Santos, eBook (PDF) ISBN: 978-953-51-4151-8, DOI: 10.5772/64378 [Google Scholar]
  10. Ikanović, J., Popović,V., Rakaščan, N., Janković, S., Živanović, Lj., Kolarić, Lj., Mladenović Glamočlija, M. & Dražić,G. (2020). Genotype and Environment Effect of Soybean Production and Biogas. GEA (Geo Eco-Eco Agro) International Conference, 28-31 May 2020, Montenegro - Book of Proceedings, 280-288, in Advances in Silage Production and Utilization, 173- 196, Edited by Thiago Da Silva, Intech Open, ISBN: 978-953-51-4151-8. DOI: 10.5772/64378 [Google Scholar]
  11. Krzystek, L., Wajszczuk, K.,Pazera, A., Matyka, M, Slezak, R. & Ledakowicz, S.(2020). The Infuence of Plant Cultivation Conditions on Biogas Production: Energy Efciency, Waste and Biomass Valorization, 11,513–523. [Google Scholar] [Crossref] 
  12. Kulichkova, G., Ivanova, T., Köttner, M., Volodko, O., Spivak, S., Tsygankov, S. Blume, Y., Zlateva, P.& Dimitrov, R. (2021). An analysis of the potential use of waste materials for biogas plant development. OP Conf. Ser.: Mater. Sci. Eng. 1031 012012 [Google Scholar]
  13. Lansche, J. & Müller, J. (2012). Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Eng. Life Sci., 12, 313–320. [Google Scholar]
  14. Meyer-Aurich, A.,Lochmann, Y., Klauss, H., & Prochnow, A. (2016).Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation. Sustainability, 8, 617. doi:10.3390/su8070617 [Google Scholar] [Crossref] 
  15. Milanović, T., Popović, V., Vučković, S., Popović, S., Rakaščan, N. & Petković Z. (2020): Analysis of soybean production and biogas yield to improve eco-marketing and circular economy.Economics of Agriculture, Belgrade, 67 (1): 50-60. [Google Scholar]
  16. Neshat, S. A., Mohammadi, M., Najafpour, G. D. & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production, Renewable and Sustainable Energy Reviews, 79, 308-322. [Google Scholar]
  17. Ning, T., Zheng, Y., Han, H., Jiang, G., & Li, Z. (2012). Nitrogen uptake, biomass yield and quality of intercropped spring-and summer-sown maize at different nitrogen levels in the North China Plain. Biomass Bioenergy, 47,91–98. 059 [Google Scholar] [Crossref] 
  18. Oleszek, M.& Matyka, M. (2020). Energy Use Efficiency of Biogas Production Depended on Energy Crops, Nitrogen Fertilization Level, and Cutting System. BioEnergy Research, 13 (4) [Google Scholar] [Crossref] 
  19. Ormaechea, P., Castrillon, L., SuÃrez, B., Megido, L., Fernández, Y., Negral, L., Marañon, E.& RodrÃguez-Iglesias, J. (2018). Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM. Renewable Energy, 12610.1016/j.renene.2018.04.022 [Google Scholar]
  20. Pastorelli, R., Valboa, G., Lagomarsino, A., Fabiani, A., Simoncini, S.; Zaghi, M. &Vignozzi, N. (2021). Recycling Biogas Digestate from Energy Crops: Effects on Soil Properties and Crop Productivity. Appl. Sci. 11, 750. [Google Scholar] [Crossref] 
  21. Popovic, V., Vidic, M., Vuckovic, S., Drazic, G., Ikanovic, J., Djekic, V. &Filipovic, V. (2015). Determining genetic potential and quality components of NS soybean cultivars under different agroecological conditions.Romanian Agriculture Research, 32,35-45. [Google Scholar]
  22. Popović, V., Vučković, S., Jovović, J., Rakašćan, N., Kostić, M., Ljubičić, N., Mladenović-Glamočlija, M. & Ikanović, J. (2020). Genotype by year interaction effects on soybean morpho-productive traits and biogas production. Genetika, 52(3), 1055-1073. [Google Scholar]
  23. Rakašćan, N., Popović, V., Ikanović, J., Janković, S., Dražić, G., Lakić, Ž. & Živanović, Lj. (2020). Wheat Straw in the Function of Obtaining Animal Feed and Biofuel. EC Veterinary Science, 5(12), 21-29. [Google Scholar]
  24. Rakašćan, N., Drazić, G., Popović, V., Milovanović, J., Zivanović, Lj., Aćimić Remikovic, M., Milanovic, T., Ikanovic, J. (2021). Effect of digestate from anaerobic digestion on Sorghum bicolor L. production and circular economy. Not Bot Horti Agrobo,  49(1),12270 [Google Scholar]
  25.ß, C., Herrmann, C., Weiser, C., Kornatz, P., Heiermann, M., Aurbacher, J., Müller, J. & Vetter, A. (2019). Can Energy Cropping for Biogas Production Diversify Crop Rotations? Findings from a Multi-Site Experiment in Germany. Bioenerg. Res., 12, 123–136. [Google Scholar] [Crossref] 
  26. Sukhesh, M. J. & Rao, P.W. (2018). Anaerobic digestion of crop residues: Technological developments and environmental impact in the Indian context.  Biocatalysis and Agricultural Biotechnology,  513–528. [Google Scholar] [Crossref] 
  27. Thomas, H.L., Pot, D., Latrille, E.,   Trouche, G., Bonnal, L., Bastianelli, D. & Carrère, H. (2019). Sorghum Biomethane Potential Varies with the Genotype and the Cultivation Site. Waste Biomass Valor. 10, 783–788. [Google Scholar] [Crossref] 
  28. Turkmen, B.A. (2020). Renewable Energy Applications for Sustainable Agricultural Systems . International Journal of Innovative Approaches in Agricultural Research, 4(4), 497-504. doi: 10.29329/ijiaar.2020.320.11 [Google Scholar] [Crossref] 
  29. Vasileva, V. & Vasilev, E. (2020). Agronomic characterization and the possibility for potential use of subterranean clover (Trifolium subterraneum L.) In the forage production in Bulgaria. Pak. J. Bot., 52(2), 565-568. DOI: [Google Scholar]
  30. Weiland, P. (2010). Biogas production: current state and perspectives. Appl Microbiol Biotechnol, 85, 849–860. DOI 10.1007/s00253-009-2246-7 [Google Scholar]
  31. Xiang, C., Tian, D., Wang, W., Shen, F., Zhao, G., Ni, X., Zhang, Y., Yang, G. & Zeng, Y.   (2020). Fates of Heavy Metals in Anaerobically Digesting the Stover of Grain Sorghum Harvested from Heavy Metal-Contaminated Farmland. Waste and Biomass Valorization, 11, 1239–1250. [Google Scholar] [Crossref] 
  32. Yadav, P., Priyanka P., Kumar D., Yadav A.& Yadav K. (2019). Bioenergy Crops: Recent Advances and Future Outlook. In: Rastegari A., Yadav A., Gupta A. (eds) Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, vol 10. Springer, Cham.  [Google Scholar] [Crossref] 
  33. Zlateva, P. & Dimitrov, R. (2021). An analysis of the potential use of waste materials for biogas plant development. IOP Conf. Series: Materials Science and Engineering, 1031, 012012, doi:10.1088/1757-899X/1031/1/012012 [Google Scholar] [Crossref]