International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article | International Journal of Innovative Approaches in Agricultural Research 2021, Vol. 5(2) 241-256

A review of the Current State of Soil Infertility and Management Options in Kenya: The Case of Maize Growing Regions 

Hillary M. O. Otieno

pp. 241 - 256   |  DOI:

Published online: June 30, 2021  |   Number of Views: 8  |  Number of Download: 26


Inappropriate soil fertility management has caused fertility to decline considerably over the years leading to low maize yields despite the growing human population with high food demand in Kenya. Despite high nutrient mining, fertilizer use and adoption of soil fertility improvement practices have remained low among maize farmers in the country. At the current yield levels, maize crops extract over 40, 8, 40.6, and 5.4 kg of N, P, K, and S per growing season, respectively. These extracted nutrients must be replaced to avoid nutrient depletion. Maize crop response to secondary macronutrients (S, Ca, and Mg) and micronutrients (Zn and B) is evidenced, signifying that these nutrients have also reached critical levels in Kenya soils. The rate of replenishing these lost nutrients is still low, farmers apply an average of 43.25 kg of fertilizer per hectare per season. The situation is worsened further by increasing soil acidity- currently below pH 5.5 in most maize-growing regions. Poor agronomic practices applied by farmers directly reduce yields and facilitate other factors leading to nutrient losses. For example, farmers across the country recycle seeds, apply low fertility rates, and rarely keep their fields weed-free. These practices lower the capacity of the crops to tolerate the impact of other production constraints including infertility.

To realize yield improvement and return on investments, farmers must adapt and adopt crucial practices under integrated soil fertility management. Managing soil acidity should be the first approach to unlocking fixed nutrients. Fertilizer application should follow the right rate, right source, right time, and right placement approach. Also, improved cropping systems such as maize-legume rotation and intercropping should be considered for sustainable soil fertility management and crop production.

Keywords: : Agronomic practices, ISFM, fertilizer application, maize production, soil infertility, soil acidity

How to Cite this Article?

APA 6th edition
Otieno, H.M.O. (2021). A review of the Current State of Soil Infertility and Management Options in Kenya: The Case of Maize Growing Regions  . International Journal of Innovative Approaches in Agricultural Research, 5(2), 241-256. doi: 10.29329/ijiaar.2021.358.9

Otieno, H. (2021). A review of the Current State of Soil Infertility and Management Options in Kenya: The Case of Maize Growing Regions  . International Journal of Innovative Approaches in Agricultural Research, 5(2), pp. 241-256.

Chicago 16th edition
Otieno, Hillary M. O. (2021). "A review of the Current State of Soil Infertility and Management Options in Kenya: The Case of Maize Growing Regions  ". International Journal of Innovative Approaches in Agricultural Research 5 (2):241-256. doi:10.29329/ijiaar.2021.358.9.

  1. Achieng, J. O., Ouma, G., Odhiambo, G., & Muyekho, F. (2010). Effect of farmyard manure and inorganic fertilizers on maize production on Alfisols and Ultisols in Kakamega, western Kenya. Agriculture and Biology Journal of North America, 1(4), 430-439. [Google Scholar]
  2. Ademba, J. S., Kwach, J. K., Esilaba, A. O., & Ngari, S. M. (2015). The effects of phosphate fertilizers and manure on maize yields in South Western Kenya. East African Agricultural and Forestry Journal, 81(1), 1-11. [Google Scholar] [Crossref] 
  3. Argwings-Kodhek G, Jayne TS, Awuor T, and Yamano T (1998) How can micro-level household information make a difference for agricultural Policymaking? Selected examples from the KAMPAP survey of smallholder agriculture and non-farm activities for selected districts in Kenya. Tegemeo Institute of Agricultural Policy and Development. Nairobi: Tegemeo Institute, Egerton University. [Google Scholar]
  4. Bertol, I., Mello, E. L., Guadagnin, J. C., Zaparolli, A. L. V., & Carrafa, M. R. (2003). Nutrient losses by water erosion. Scientia Agricola, 60(3), 581-586. [Google Scholar] [Crossref] 
  5. Birch, H.F. (1960) Nitrification in soils after different periods of dryness. Plant Soil 12, 81–96. [Google Scholar] [Crossref] 
  6. Bolan, N. S., & Hedley, M. J. (2003). Role of carbon, nitrogen, and sulfur cycles in soil acidification. Handbook of soil acidity. Marcel Dekker, New York, 29-56. [Google Scholar]
  7. Bruulsema, T. W., Fixen, P. E., Sulewski, G. D., & IPNI. (2012). 4R plant nutrition manual: A manual for improving the management of plant nutrition. International Plant Nutrition Institute (IPNI), Norcross, GA, USA. [Google Scholar]
  8. Bünemann, E., Smithson, P., Jama, B. et al. (2004) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264, 195–208. [Google Scholar] [Crossref] 
  9. Camargo, P. (1989). Dinâmica do nitrogênio dos fertilizantes uréia (15N) e aquamônia (15N) incorporados ao solo na cultura de cana-de-açúcar. 1989. 104p (Doctoral dissertation, Dissertação (Mestrado)-Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba). [Google Scholar]
  10. Cheruiyot, E. K., Mumera, L. M., Nakhone, L. N., & Mwonga, S. M. (2001). Rotational effects of grain legumes on maize performance in the Rift Valley highlands of Kenya. African Crop Science Journal, 9(4), 667-676. [Google Scholar] [Crossref] 
  11. Day, A. D., & Ludeke, K. L. (1993). Soil acidity. In-Plant Nutrients in Desert Environments (pp. 31-33). Springer, Berlin, Heidelberg. [Google Scholar]
  12. Espinoza, L. & Ross, J. (2003). Fertilization and liming. In: Corn production handbook, pp. 23–27. University of Arkansas Cooperative Extension Service, Little Rock, AR [Google Scholar]
  13. FURP (1987) Description of the first priority sites. Fertilizer use research project. Phase 1, Final report Annex III. Ministry of Agriculture, Kenya in Co-operation with the German Agency for International Co-operation. Nairobi, Kenya. [Google Scholar]
  14. Gao G, and Chang C (1996) Changes in CEC and particle size distribution of soils associated with long-term annual application of cattle feedlot manure. Soil Sci, 161:115–120 [Google Scholar]
  15. Gascho, G. J., Davis, J. G., Hook, J. E., Wauchope, R. D., Dowler, C. C., Johnson, A. W., ... & Sumner, H. R. (1998). Nitrate-nitrogen, soluble, and bioavailable phosphorus runoff from simulated rainfall after fertilizer application. Soil Science Society of America Journal, 62(6), 1711-1718. [Google Scholar] [Crossref] 
  16. Gitari, H. I., Mochoge, B. E., & Danga, B. O. (2015). Effect of lime and goat manure on soil acidity and maize (Zea mays) growth parameters at Kavutiri, Embu County-Central Kenya. Journal of Soil Science and Environmental Management, 6(10), 275-283. [Google Scholar] [Crossref] 
  17. Gudu, S. O., J.R. Okalebo, C.O. Othieno, P.A. Obura, D.O. Ligeyo, D. Schulze, et al., (2005) Response of maize to nitrogen, phosphorus and lime on acid soils of western Kenya, in: J.S. Tenywa, E. Adipala, P. Nampala, G. Tusiime, P. Okori, Khamuhangire (Eds.), Crop Science Conference Proceedings, Kampala, Uganda 7;1109-1115. [Google Scholar]
  18. Havlin, J.L., J.D. Beaton, S.L. Tisdale, and Nelson W.L. (1999). Soil Fertility and Fertilizers. 6th Edition. Prentice Hall. Upper Saddle River, NJ. 499 p [Google Scholar]
  19. Higashida S. & Takao K.  (1986) Relations between Soil Microbial Activity and Soil Properties in Grassland, Soil Science and Plant Nutrition, 32:4, 587-597. [Google Scholar] [Crossref] 
  20. Kalkhoran, S. S., Pannell, D., Thamo, T., Polyakov, M., & White, B. (2020). Optimal lime rates for soil acidity mitigation: impacts of crop choice and nitrogen fertiliser in Western Australia. Crop and Pasture Science, 71(1), 36-46. [Google Scholar] [Crossref] 
  21. Kang'ethe E. (2011). Situation analysis: Improving food safety in the maize value chain in Kenya. Report prepared for FAO. College of Agriculture and Veterinary Science, University of Nairobi, Nairobi. [Google Scholar]
  22. Kanyanjua, S. M., Ireri, L., Wambua, S., & Nandwa, S. M. (2002). Acidic soils in Kenya: Constraints and remedial options. [Google Scholar]
  23. Kisinyo, P. O., Othieno, C. O., Gudu, S. O., Okalebo, J. R., Opala, P. A., Ng'Etich, W. K., ... & Too, E. J. (2014). Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in western Kenya. Experimental Agriculture, 50(1), 128-143. [Google Scholar] [Crossref] 
  24. Kisinyo, P. O., Othieno, C. O., Gudu, S. O., Okalebo, J. R., Opala, P. A., Maghanga, J. K., ... & Ogola, B. O. (2013). Phosphorus sorption and lime requirements of maize growing acid soils of Kenya. Sustainable Agriculture Research, 2(526-2016-37956). [Google Scholar]
  25. Kwabiah, A. B., Stoskopf, N. C., Palm, C. A., Voroney, R. P., Rao, M. R., & Gacheru, E. (2003). Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short-term study in western Kenya. Agriculture, ecosystems & environment, 95(1), 49-59. [Google Scholar]
  26. Lehmann J, and Schroth G (2003) Nutrient leaching. In: Schroth G, Sinclair FL (eds) Trees, crops and soil fertility. CAB International, Wallingford, pp 151–166 [Google Scholar]
  27. Lehmann, J., Feilner, T., Gebauer, G. et al. (1999) Nitrogen uptake of sorghum (Sorghum bicolor L.) from tree mulch and mineral fertilizer under high leaching conditions estimated by nitrogen-15 enrichment. Biol Fertil Soils 30, 90–95. [Google Scholar] [Crossref] 
  28. Lungu, O. I., & Dynoodt, R. F. (2008). Acidification from long-term use of urea and its effect on selected soil properties. African Journal of Food, Agriculture, Nutrition and Development, 8(1), 63-76. [Google Scholar]
  29. Mary K. Mathenge (2009): Fertilizer Types, Availability and Consumption In Kenya. Paper presented at the 6th National Fertilizer Conference in Kenya, on “Towards Increased Use of Fertilizer and Improved Seed for Food Security and Economic Growth, KARI Headquarters, Nairobi, Kenya, August 20-21, 2009. Tegemeo Institute, Egerton University. [Google Scholar]
  30. Ministry of Agriculture, Livestock and Fisheries of Kenya (2014) Soil suitability evaluation for maize production in Kenya. A Report by National Accelerated Agricultural Inputs Access Programme (NAAIAP) in collaboration with Kenya Agricultural Research Institute (KARI) Department of Kenya Soil Survey, February 2014. [Google Scholar]
  31. Muchena, F. N., & Gachene, C. K. K. (1988). Soils of the highland and mountainous areas of Kenya with special emphasis on agricultural soils. Mountain Research and Development, 183-191. [Google Scholar] [Crossref] 
  32. Mucheru-Muna, M., Mugendi, D., Kung’u, J., Mugwe, J., & Bationo, A. (2007). Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. Agroforestry Systems, 69(3), 189-197. [Google Scholar]
  33. Mucheru-Muna, M., Pypers, P., Mugendi, D., Kung’u, J., Mugwe, J., Merckx, R., & Vanlauwe, B. (2010). A staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crops Research, 115(2), 132-139. https://doi.org10.1016/j.fcr.2009.10.013 [Google Scholar]
  34. Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N and Foley JA (2012) Closing yield gaps through nutrient and water management. Nature, 490(7419): 254-257. [Google Scholar] [Crossref] 
  35. Mugwe, J., Mugendi, D., Kungu, J., & Mucheru-Muna, M. (2007). Effect of plant biomass, manure and inorganic fertilizer on maize yield in the Central Highlands of Kenya. African Crop Science Journal, 15(3). [Google Scholar] [Crossref] 
  36. Muhammad L, Underwood E (2004) The maize agricultural con-text in Kenya. In: Andow DA, Hilbeck A (eds) Risk assessment of genetically modified organisms. A case study of Bt Maize in Kenya, vol 1. CABI Publishing, Wallingford, pp21–56 [Google Scholar]
  37. Murdock, L. W. (1997). Pelletized Lime-How Quickly Does It React. [Google Scholar]
  38. Musandu AAO and Njul NA (1999) Response of maize to phosphorus fertilization at selected sites in western Kenya. African Crop Science Journal, 7(4): 397-406. [Google Scholar] [Crossref] 
  39. Ngome, A. F., Becker, M., Mtei, M. K., & Mussgnug, F. (2013). Maize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management. International Journal of Plant Production, 7(3), 517-536. [Google Scholar]
  40. Njoroge, R., Otinga, A., Okalebo, J., Pepela, M., & Merckx, R. (2018). Maize (Zea mays L.) Response to Secondary and Micronutrients for Profitable N, P and K Fertilizer Use in Poorly Responsive Soils. Agronomy, 8(4), 49. [Google Scholar] [Crossref] 
  41. Ojiem, J.O., Franke, A.C., Vanlauwe, B., de Ridder, N., & Giller, K. (2014). Benefits of legume–maize rotations: assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crops Research, 168, 75-85. [Google Scholar] [Crossref] 
  42. Oliveira, M. W. D., Trivelin, P. C. O., Boaretto, A. E., Muraoka, T., & Mortatti, J. (2002). Leaching of nitrogen, potassium, calcium and magnesium in a sandy soil cultivated with sugarcane. Pesquisa Agropecuária Brasileira, 37(6), 861-868. [Google Scholar] [Crossref] 
  43. Omuto, C.T. (2013). Chapter 11: Major Soil and Data Types in Kenya. In P. Paron, D.O. Olago and C.T. Omuto (eds.). Kenya: A Natural Outlook: Geo-Environmental Resources and Hazards 16, 123. [Google Scholar]
  44. One Acre Fund (2014). Managing Soil Acidity Phase 2 Trial Report (2014). One Acre Fund. [Google Scholar]
  45. Oseko, E., & Dienya, T. (2015). Fertilizer Consumption and Fertilizer Use by Crop (FUBC) in Kenya. [Google Scholar]
  46. Osundwa, M. A., Okalebo, J. R., Ngetich, W. K., Ochuodho, J. O., Othieno, C. O., Langat, B., & Omenyo, V. S. (2013). Influence of agricultural lime on soil properties and wheat (Triticum aestivum L.) yield on acidic soils of Uasin Gishu County, Kenya. American Journal of Experimental Agriculture, 3(4), 806-823. [Google Scholar] [Crossref] 
  47. Otieno H. M. O., Chemining’wa GN, Zingore S and Gachene CK (2018) Effects of inorganic fertilizer application on grain yield, nutrient use efficiency and economic returns of maize in western Kenya. Journal of Advanced Studies in Agricultural, Biological and Environmental Sciences, Vol.5.Issue.4, 11-22. [Google Scholar]
  48. Otieno, H. M. O. (2017). Nutrient Management Options for Enhancing Productivity of Maize and Beans Under Conservation and Conventional Tillage Systems (Doctoral dissertation, UNIVERSITY OF NAIROBI). [Google Scholar]
  49. Otieno, H. M. O. (2019). Growth and Yield Response of Maize (Zea mays L.) to a Wide Range of Nutrients on Ferralsols of Western Kenya. World Scientific News, 129, 96-106. [Google Scholar]
  50. Otieno, H. M. O., Chemining’wa, G. N., & Zingore, S. (2018). Effect of Farmyard Manure, Lime and Inorganic Fertilizer Applications on Soil pH, Nutrients Uptake, Growth and Nodulation of Soybean in Acid Soils of Western Kenya. Journal of Agricultural Science, 10(4), 199. [Google Scholar] [Crossref] 
  51. Otieno, H. M. O., Chemining’wa, G. N., Gachene, C. K., & Zingore, S. (2019). Economics of maize and bean production: Why Farmers need to shift to conservation agriculture for sustainable production. Turkish Journal of Agriculture-Food Science and Technology, 7(10), 1548-1553. [Google Scholar] [Crossref] 
  52. Otieno, H. M. O., Zingore, S., Chemining’wa, G. N., & Gachene, C. K. (2020). Maize (Zea mays L.) Growth and Yield Response to Tillage Methods and Fertilizer Combinations in the Midland Agro-ecological Zones of Kenya. Turkish Journal of Agriculture-Food Science and Technology, 8(3), 616-624. [Google Scholar] [Crossref] 
  53. Panda, S. K., Baluska, F., & Matsumoto, H. (2009). Aluminum stress signaling in plants. Plant signaling & behavior, 4(7), 592-7. [Google Scholar] [Crossref] 
  54. Rao, M. R., & Mathuva, M. N. (2000). Legumes for improving maize yields and income in semi-arid Kenya. Agriculture, ecosystems & environment, 78(2), 123-137. [Google Scholar] [Crossref] 
  55. Salcedo, I. H., Sampaio, E. V., & Carneiro, C. J. (1988). Dinâmica de nutrientes em cana-de-açúcar. IV. Perda de N por lixiviação em cana-planta fertilizada com ureia-15N. Pesquisa Agropecuária Brasileira, 23(7), 725-732. [Google Scholar]
  56. Schick, J., Bertol, I., Balbinot Júnior, A. A., & Batistela, O. (2000). Erosão hídrica em Cambissolo Húmico alumínico submetido a diferentes sistemas de preparo e cultivo do solo: II. Perdas de nutrientes e carbono orgânico. Revista Brasileira de Ciência do Solo, 24(2). [Google Scholar] [Crossref] 
  57. Smaling EMA, SM Nandwa and BH Janssen (1997) Soil fertility in Africa is at stake.‖ In: Buresh RJ, PA Sanchez and F Calhoun (eds.). Replenishing soil fertility in Africa. Soil Science Society of America, Special Publication 51. SSSA and America Society of Agronomy, Madison, Wisconsin, p. 47-61I, SBN: 978-0-89118-946-6. [Google Scholar]
  58. Smaling, E. M. A., Nandwa, S. M., Prestele, H., Roetter, R., & Muchena, F. N. (1992). Yield response of maize to fertilizers and manure under different agro-ecological conditions in Kenya. Agriculture, ecosystems & environment, 41(3-4), 241-252. [Google Scholar]
  59. Stanley Guantai and Lydia Mbevi Nderitu (2011) Report on the Aflacontrol Conference 13th January 2011 at Southern Sun Hotel, Nairobi, Kenya. Retrieved from: [Google Scholar]
  60. Valbuena D, Erenstein O, Tui SHK, Abdoulaye T, Claessens L, Duncan AJ, Gérard B, Rufino MC, Teufel N, van Rooyen A and van Wijk MT (2012) Conservation Agriculture in mixed crop-livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Research, 132: 175–184. [Google Scholar] [Crossref] 
  61. Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., ... & Smaling, E. M. A. (2010). Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook on agriculture, 39(1), 17-24. [Google Scholar] [Crossref] 
  62. Verde, B. S., Danga, B. O., & Mugwe, J. N. (2013). Effects of manure, lime and mineral P fertilizer on soybean yields and soil fertility in a humic nitisol in the Central Highlands of Kenya. International Journal of Agricultural science research, 2(9), 283-291. [Google Scholar]
  63. Wangia, C., Wangia, S., & De Groote, H. (2002). Review of maize marketing in Kenya: Implementation and impact of liberalisation, 1989-1999. [Google Scholar]
  64. Wopereis MCS, Becker M, DE. Johnson and Sow A (2006) Rice yield gaps in irrigated systems along an agroecological gradient in West Africa. Zeitschrift für Pflanzenernahrung und Bodenkunde. Journal of Plant Nutrition and Soil Science, 166(1), 61-67. [Google Scholar] [Crossref] 
  65. World Bank (2018) Population Growth Rate- Kenya. Retrieved from: POP.GROW on 26th November, 2018. [Google Scholar]
  66. Yamoah C, Ngueguim M, Ngong C, and Dias DKW (1996) Reduction of P fertilizer requirements using lime and Mucuna on high P sorption soils of North West Cameroon. African Crop Science Journal, 4: 441-451. [Google Scholar]