International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2020, Vol. 4(3) 340-352

Comparative Responses of Algerian Tetraploid Wheat Cultivars to Salinity at the Seedling Stage

Zine El Abidine Fellahi, Insaf Bentouati & Hadjer Safsaf

pp. 340 - 352   |  DOI: https://doi.org/10.29329/ijiaar.2020.274.7

Published online: September 30, 2020  |   Number of Views: 45  |  Number of Download: 603


Abstract

Salinity is one of the most abiotic stresses restricting wheat growth and productivity in arid and semi-arid regions. This study was carried out to examine the effect of salt stress induced by sodium chloride (NaCl) at different concentration levels (0, 50, 100 and 150 mM) on seed germination rate, root length, roots number, coleoptile length, root and shoot fresh weights of eleven durum wheat varieties. The results revealed significant differences among the genotypes for all the measured parameters. The increase in NaCl concentrations showed concomitant decrease in all morphological attributes, but varied depending on cultivars and levels of salinity. Seed germination rate and root length demonstrated a linear response to NaCl treatment, while significant linear and quadratic regression on salinity for roots number, coleoptile length, root and shoot fresh weights were observed. The cluster analysis based on Ward’s method sequestrated the studied genotypes into three clusters. Seed germination rate and root length showed the lowest difference among the groups; and the remaining traits: roots number, coleoptile length, root and shoot fresh weights were the most indicative of salt-tolerance. Waha, Megress and GTA dur were the most tolerant genotypes that could be used as donors of choice in wheat breeding programs targeting the improvement of salinity tolerance during the seedling stage.

Keywords: Genotypic variation, NaCl, Screening, Regression, Tolerance, Triticum durum.


How to Cite this Article

APA 6th edition
Fellahi, Z.E.A., Bentouati, I. & Safsaf, H. (2020). Comparative Responses of Algerian Tetraploid Wheat Cultivars to Salinity at the Seedling Stage . International Journal of Innovative Approaches in Agricultural Research, 4(3), 340-352. doi: 10.29329/ijiaar.2020.274.7

Harvard
Fellahi, Z., Bentouati, I. and Safsaf, H. (2020). Comparative Responses of Algerian Tetraploid Wheat Cultivars to Salinity at the Seedling Stage . International Journal of Innovative Approaches in Agricultural Research, 4(3), pp. 340-352.

Chicago 16th edition
Fellahi, Zine El Abidine, Insaf Bentouati and Hadjer Safsaf (2020). "Comparative Responses of Algerian Tetraploid Wheat Cultivars to Salinity at the Seedling Stage ". International Journal of Innovative Approaches in Agricultural Research 4 (3):340-352. doi:10.29329/ijiaar.2020.274.7.

References
  1. Adjel, F., Bouzerzour, H., & Benmahammed, A. (2013). Salt stress effects on seed germination and seedling growth of barley (Hordeum Vulgare L.) genotypes. Journal of Agriculture and Sustainability, 3(2), 223-237. [Google Scholar]
  2. Aflaki, F., Sedghi, M., Pazuki, A., & Pessarakli, M. (2017). Investigation of seed germination indices for early selection of salinity tolerant genotypes: A case study in wheat. Emirates Journal of Food and Agriculture, 29(3), 222-226.  [Google Scholar]
  3. Ahmed, I.M., Nadira, U.A., Bibi, N., Zhang, G., & Wu, F. (2015). Tolerance to combined stress of drought and salinity in barley. In Combined Stresses in Plants. Springer, Cham, pp. 93-121. [Google Scholar]
  4. Aisawi, K.A.B., Reynolds, M.P., Singh, R.P., & Foulkes, M.J. (2015). The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 55(4), 1749-1764.  [Google Scholar]
  5. Allel, D., BenAmar, A., Badri, M., & Abdelly, C. (2019). Evaluation of salinity tolerance indices in North African barley accessions at reproductive stage. Czech Journal of Genetics and Plant Breeding, 55(2), 61-69.                       [Google Scholar]
  6. Almansouri, M., Kinet, J.M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and soil, 231(2), 243-254. [Google Scholar]
  7. Balota, M., Green, A. J., Griffey, C.A., Pitman, R., & Thomason, W. (2017). Genetic gains for physiological traits associated with yield in soft red winter wheat in the Eastern United States from 1919 to 2009. European Journal of Agronomy, 84, 76-83.  [Google Scholar]
  8. Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24(1), 23-58.                                                                     [Google Scholar]
  9. Ben Naceur, M., Rahmoune, C., Sdiri, H., Meddahi, M.L., & Selmi, M. (2001). Effet du stress salin sur la germination, la croissance et la production en grains de quelques variétés maghrébines de blé. Sécheresse, 12, 167-74. [Google Scholar]
  10. Benbelkacem, A. (2013). Special report on the results of the project “Enhancing food Security in Arab countries”, Icarda –INRAA. [Google Scholar]
  11. Benmahioul, B., Daguin, F., & Kaid-Harche, M. (2009). Effet du stress salin sur la germination et la croissance in vitro du pistachier (Pistacia vera L.). Comptes Rendus Biologies, 332(8), 752-758.                                           [Google Scholar]
  12. Buck, H., & Nisi, J. (Eds.). (2007). Wheat production in stressed environments. Proceedings of the 7th international wheat conference, 27 nov-2 Dec 2005, Mar del plata, Argentina developments in plant breeding, volume 12. [Google Scholar]
  13. De Vita, P., Nicosia, O.L.D., Nigro, F., Platani, C., Riefolo, C., Di Fonzo, N., & Cattivelli, L. (2007). Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. European Journal of Agronomy, 26(1), 39-53.     [Google Scholar]
  14. del Pozo, A., Matus, I., Ruf, K., Castillo, D., Méndez-Espinoza, A.M., & Serret, M.D. (2019). Genetic Advance of Durum Wheat Under High Yielding Conditions: The Case of Chile. Agronomy, 9(8), 454.                                                   [Google Scholar]
  15. Fellahi, Z., Zaghdoudi, H., Bensaadi, H., Boutalbi, W., & Hannachi, A. (2019). Assessment of salt stress effect on wheat (Triticum aestivum L.) cultivars at seedling stage. Agriculturae Conspectus Scientificus, 84(3), 1-8.             [Google Scholar]
  16. Feyzi, M. (2003). Effect of irrigation water salinity on wheat yield. Soil Water Science, 16, 215-221. [Google Scholar]
  17. Gummadov, N., Keser, M., Akin, B., Cakmak, M., Mert, Z., Taner, S., Ozturkf, I., Topal, A., Yazard, S., & Morgounov, A. (2015). Genetic gains in wheat in Turkey: Winter wheat for irrigated conditions. The Crop Journal, 3(6), 507-516.  [Google Scholar]
  18. Hasan, M.I., Kibria, M.G., Jahiruddin, M., Murata, Y., & Hoque, M.A. (2015). Improvement of Salt Tolerance in Maize by Exogenous Application of Proline. Journal of Environmental Science and Natural Resources, 8(1), 13-18.  [Google Scholar]
  19. Maggio, A., De Pascale, S., Fagnano, M., & Barbieri, G. (2011). Saline agriculture in Mediterranean environments. Italian journal of Agronomy, 6, 36-43.            [Google Scholar]
  20. Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250.                                                                      [Google Scholar]
  21. Munns, R., & James, R.A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253(1), 201-218.                                   [Google Scholar]
  22. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.                                                                        [Google Scholar]
  23. Paranychianakis, N.V., & Chartzoulakis, K.S. (2005). Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agriculture, Ecosystems & Environment, 106(2-3), 171-187.                                        [Google Scholar]
  24. Pfeiffer, W.H., Sayre, K.D., & Reynolds, M.P. (2000). Enhancing genetic grain yield potential and yield stability in durum wheat. In: Royo, C. (ed.), Nachit, M. (ed.), Di Fonzo, N. (ed.), Araus, J.L. (ed.). Durum wheat improvement in the Mediterranean region: New challenges. Zaragoza: CIHEAM, 83-93. (Options Méditerranéennes : Série A. Séminaires Méditerranéens ; n. 40) [Google Scholar]
  25. Rastoin, J.L., & Benabderrazik, E.H. (2014). Céréales et oléoprotéagineux. Construire la Méditerranée. IPEMED. [Google Scholar]
  26. Shiferaw, B., Smale, M., Braun, H.J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291-317.  [Google Scholar]
  27. Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822.                                    [Google Scholar]
  28. Yildirim, M., Kizilgeci, F., Akinci, C., & Albayrak, Ö. (2015). Response of durum wheat seedlings to salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1), 108-112.  [Google Scholar]
  29. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag. [Google Scholar]
  30. Zhang, Y., Xu, W., Wang, H., Dong, H., Qi, X., Zhao, M., Fang, Y., Gao, C., & Hu, L. (2016). Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Field Crops Research, 199, 117-128.  [Google Scholar]
  31. Zörb, C., Geilfus, C.M., & Dietz, K.J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38. [Google Scholar]