- Ahmad, R. and M. Sardar (2013). TiO2 nanoparticles as an antibacterial agents against E. coli. Int. J. Innov. Res. Sci. Eng. Technol., 2(8), 3569–3574. [Google Scholar]
- Aytekin Aydın, M. T., H.L. Hoşgün, A. Dede and K. Güven (2018). Synthesis, characterization and antibacterial activity of silver-doped TiO 2 nanotubes. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 205, 503–507. [Google Scholar]
- Brayner, R., R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti and F. Fiévet (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870. [Google Scholar]
- Daou, I., N. Moukrad, O. Zegaoui and F. Rhazi Filali (2017). Antimicrobial activity of ZnO-TiO2 nanomaterials synthesized from three different precursors of ZnO: influence of ZnO/TiO 2 weight ratio. Water Sci. Technol., 77(5), 1238–1249. [Google Scholar]
- Kiran, A., T.S. Kumar, R. Sanghavi, M. Doble and S. Ramakrishna (2018). Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO2 Nanocomposite Coatings. Nanomaterials, 8(10), 860. [Google Scholar]
- Othman, S.H., N. R. Abd Salam, N. Zainal, R. Kadir Basha and R.A. Talib (2014). Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int. J. Photoenergy, 6. [Google Scholar]
- Park, K., M. Lee, T. Oh, K.-Y.Kim and J. Ma (2017). Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo. BMC Complementary and Alternative Medicine, 17(1). [Google Scholar]
- Priyanka, K. P., T. Varghese, T. H. Sukirtha and K. M. Balakrishna (2016). Microbicidal activity of TiO2 nanoparticles synthesised by sol–gel method. IET Nanobiotechnology, 10(2), 81–86. [Google Scholar]
- Simon-Deckers, A., B. Gouget, M. Mayne-L’Hermite, N. Herlin-Boime, C. Reynaud and M. Carrière (2008). In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology, 253(1-3), 137–146. [Google Scholar]
- Thill, A., O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan and A. M. Flank (2006). Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol., 40, 6151-6156. [Google Scholar]
- Wang, L., C. Hu and L. Shao (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 14;12:1227-1249. [Google Scholar]
- Wang, J., X. Wei and M. Fan (2018). Assessment of antibiotic susceptibility within lactic acid bacteria and coagulase-negative staphylococci isolated from hunan smoked pork, a naturally fermented meat product in China. J. Food Sci., 83(6), 1707–1715. [Google Scholar]
- Yu, Q., H. Wang, Q. Peng, Y. Li, Z. Liu and M. Li (2017). Different toxicity of anatase and rutile TiO 2 nanoparticles on macrophages: Involvement of difference in affinity to proteins and phospholipids. J. Hazard. Mater., 335, 125–134. [Google Scholar]
- Yuan, P., X. Ding, Y.Y. Yang and Q.-H. Xu (2018). Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv. Healthc. Mater., 7(13), 1701392. [Google Scholar]
|