International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2019, Vol. 3(2) 177-182

Antimicrobial Effects of TiO2 Nanoparticles against Drug-Resistant Bacteria and Candida Albicans

Houneida Benbouzıd, Zahra Obeızı & Abd El Ghani Djahoudı

pp. 177 - 182   |  DOI: https://doi.org/10.29329/ijiaar.2019.194.3

Published online: June 30, 2019  |   Number of Views: 168  |  Number of Download: 923


Abstract

Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. The metallic nanoparticles is the most promising nanomaterials with antibacterial properties and which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. This work focuses on the antibacterial activity of TiO2 against drug-resistant bacteria and Candida albicans. The antibacterial activity of TiO2 was evaluated using the determination of minimum inhibitory concentration (MIC) by the dilution method on agar medium. The obtained results show a significant antibacterial activity on the strains tested: Pseudomonas aeruginosa ATCC27853: 0.5 μg/mL, Staphylococcus aureus ATCC29213: 64 μg/mL, Escherichia coli ATCC25922: 128 μg/mL and Candida albicans 0.5 μg/mL. The Titanium Dioxide nanoparticles appear to be attractive candidates of choice to be an effective alternative to antibiotics and pave the way for a promising new strategy antibacterial nanoscale.

Keywords: Nanoparticules, Titanium Dioxide, Antibacterial Activity, Minimal Inhibitory Concentration.


How to Cite this Article

APA 6th edition
Benbouzid, H., Obeizi, Z. & Djahoudi, A.E.G. (2019). Antimicrobial Effects of TiO2 Nanoparticles against Drug-Resistant Bacteria and Candida Albicans . International Journal of Innovative Approaches in Agricultural Research, 3(2), 177-182. doi: 10.29329/ijiaar.2019.194.3

Harvard
Benbouzid, H., Obeizi, Z. and Djahoudi, A. (2019). Antimicrobial Effects of TiO2 Nanoparticles against Drug-Resistant Bacteria and Candida Albicans . International Journal of Innovative Approaches in Agricultural Research, 3(2), pp. 177-182.

Chicago 16th edition
Benbouzid, Houneida, Zahra Obeizi and Abd El Ghani Djahoudi (2019). "Antimicrobial Effects of TiO2 Nanoparticles against Drug-Resistant Bacteria and Candida Albicans ". International Journal of Innovative Approaches in Agricultural Research 3 (2):177-182. doi:10.29329/ijiaar.2019.194.3.

References
  1. Ahmad, R. and M. Sardar (2013). TiO2 nanoparticles as an antibacterial agents against E. coli. Int. J. Innov. Res. Sci. Eng. Technol., 2(8), 3569–3574. [Google Scholar]
  2. Aytekin Aydın, M. T., H.L. Hoşgün, A. Dede and K. Güven (2018). Synthesis, characterization and antibacterial activity of silver-doped TiO 2 nanotubes. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 205, 503–507. [Google Scholar]
  3. Brayner, R., R. Ferrari-Iliou, N. Brivois, S. Djediat, M. F. Benedetti and F. Fiévet (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870. [Google Scholar]
  4. Daou, I., N. Moukrad, O. Zegaoui and F. Rhazi Filali (2017). Antimicrobial activity of ZnO-TiO2 nanomaterials synthesized from three different precursors of ZnO: influence of ZnO/TiO 2 weight ratio. Water Sci. Technol., 77(5), 1238–1249. [Google Scholar]
  5. Kiran, A., T.S. Kumar, R. Sanghavi, M. Doble and S. Ramakrishna (2018). Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO2 Nanocomposite Coatings. Nanomaterials, 8(10), 860. [Google Scholar]
  6. Othman, S.H., N. R. Abd Salam, N. Zainal, R. Kadir Basha and R.A. Talib (2014). Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int. J. Photoenergy, 6. [Google Scholar]
  7. Park, K., M. Lee, T. Oh, K.-Y.Kim and J. Ma (2017). Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo. BMC Complementary and Alternative Medicine, 17(1). [Google Scholar]
  8. Priyanka, K. P., T. Varghese, T. H. Sukirtha and K. M. Balakrishna (2016). Microbicidal activity of TiO2 nanoparticles synthesised by sol–gel method. IET Nanobiotechnology, 10(2), 81–86. [Google Scholar]
  9. Simon-Deckers, A., B. Gouget, M. Mayne-L’Hermite, N. Herlin-Boime, C. Reynaud and M. Carrière (2008). In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology, 253(1-3), 137–146. [Google Scholar]
  10. Thill, A., O. Zeyons, O. Spalla,  F. Chauvat, J. Rose, M. Auffan and A. M. Flank (2006). Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol., 40, 6151-6156. [Google Scholar]
  11. Wang, L., C. Hu and L. Shao (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 14;12:1227-1249. [Google Scholar]
  12. Wang, J., X. Wei and M. Fan (2018). Assessment of antibiotic susceptibility within lactic acid bacteria and coagulase-negative staphylococci isolated from hunan smoked pork, a naturally fermented meat product in China. J. Food Sci., 83(6), 1707–1715.  [Google Scholar]
  13. Yu, Q., H. Wang, Q. Peng, Y. Li, Z. Liu and M. Li (2017). Different toxicity of anatase and rutile TiO 2 nanoparticles on macrophages: Involvement of difference in affinity to proteins and phospholipids. J. Hazard. Mater., 335, 125–134. [Google Scholar]
  14. Yuan, P., X. Ding, Y.Y. Yang and Q.-H. Xu (2018). Metal nanoparticles for diagnosis and therapy of bacterial infection. Adv. Healthc. Mater., 7(13), 1701392. [Google Scholar]