- Amer, G.A. and R.S. Utkhede (2000). Development of formulation of biological agents for the management of root rot lettuce and cucumber. Can. J. Microbiol. 46 (9), 809–816. [Google Scholar]
- Baker, K.F. and R.J. Cook (1988). Biological control of plant pathogens. A Phytopathol. Soc, St Paul, MN, 433 p. [Google Scholar]
- Benhamou, N., C. Garand and A. Goulet (2002). Ability of Nonpathologenic Fusarium oxysporum Strain Fo 47 to induce resistance against Pythium ultimum Infection in cucumber Appl. Environ. Microb., 68(8), 4044-4060. [Google Scholar]
- Benzina, F., F. Sahir-Halouane and K. Hamed (2016). Algerian isolates of fluorescent Pseudomonas spp. as potential biological control against wilt pathogen (Verticillium dahliae). Plant Omics Journal. POJ 9(1), 48 -60. [Google Scholar]
- Benzina, F., H. Oulebsir-Mohandkaci, M. Belaid, H. Irnatene and S. Mammeri (2017). Isolation of entomopathogenic bacteria from larvae of a lepidopteran specie; Galleria mellonella and study of their insecticidal effect. Agriculture & Forestry, 63(4). 59-68. [Google Scholar]
- Bergey, D.P. (2001). Bergey's Taxonomic Outline. Bergey's Manual of systematic bacteriology, Second edition.http://141.150.157/bergey soutline/tankyou.htm.Biocontrol agents. Antonie van Leeuwenhoek 81:537-547. Biological control agent Pseudomonas cepacia B37w inculture and incolonized wounds. [Google Scholar]
- Chen, C., R. R. Belanger, N. Benhamou and T. C. Paullitz (2000). De-fense enzymes induced in cucumber roots by treatment with plant-growth promoting rhizobacteria (PGPR). Physiol. Mol. Plant Pathol., 56 (1), 13–23. [Google Scholar]
- Chérif, M., N. Sadfi, N. Benhamou, A. Boudabous, M. R. Hajlaoui and I. Tirilly (2002). Ultrastructural and cytochemical aspects of the interaction of the antagonistic bacteria Bacillus cereus X16 and Bacillus thuringiensis 55T with Fusarium roseum var. sambucinum in vitro. J. Plant Pathol., (In press). [Google Scholar]
- Collins, D.P. and B. Jacobsen (2003). Optimizing a Bacillus subtilis iso-late for biological control of sugar beet Cercospora leaf spot. Biol. Cont. J., 26 (2), 153–161. [Google Scholar]
- De Boer, M., I. Van Der Sluis, L. C. Van Toon and P.A.H.M. Bakker (1999). Combining fluorescent Pseudomonas spp. Strains to enhance suppression of Fusarium wilt of radish Eur. J. Plant Pathol., 105, 201-210. [Google Scholar]
- Devine, K. M. (1995). The Bacillus subtilis genome project : aims and progress. Biotechnology, 13, 210-216. [Google Scholar]
- Glick, B. R., C.B. Jacobson, M.M.K. Schwarza and J. J. Pasternak (1995). 1-Amino cyclopropane- 1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can.J.Microbiol.,40, 911-915. [Google Scholar]
- Jataraf, J., N.V. Radhakrim, P. Hannk and R. Sakoof (2005). Biocontrol of tomato damping-off caused by Pythium aphanidermatum. Biocontrol, 15, 55–65. [Google Scholar]
- Joffin, J.N. and G. Leyral (2006). Microbiologie technique_TI-Dictionnaire des techniques.4eme edition.Bordeaux:CRDP d’aquitaine.P368. [Google Scholar]
- Jorjani, M., A. Heydari, H. R. Zamanizadeh, S. Rezaee and L. Naraghi (2011). Controlling sugar beet mortality disease by ap-plication of new bioformulations. J. Plant Prot. Res., 52 (3), 303–307. [Google Scholar]
- Larkin, R.P. and D. R. Fravel (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis., 82, 1022-1028. [Google Scholar]
- Lemanceau, P.(1992). Beneficial effects of rhizobacteria on plants:exemple of fluorescent Pseudomonas spp. Agronomie, 12, 413-437. [Google Scholar]
- Loper, J. E. and Æ. H. Gross (2007). Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur. J. Plant Pathol. 119, 265–278. [Google Scholar]
- Manjula, K., G. K. Krishna and A. R. Podile (2004). Whole cell of Bacillus subtilis AF1 proved more effective than cell-free and chitin-ase-based formulations in biological control of citrus fruit rot and groundnut rust. Can. J. Microbiol., 50 (9), 737–744. [Google Scholar]
- Meyer, J.J., J. T. Staley and Lorey (2004). Cours de questions revision. PCEM.PCEP.2 ème cycle master. Ed. Dunod. Paris.PP.480-481.Molecular Plant-Microbe Interactions 5, 4-13. [Google Scholar]
- Nautiyal, C.S. (2001). Biocontrol of plant diseases for agricultural sustainability. In: Upadhyay RK, Mukerji K.G., Chamola B.P. Biocontrol Potential and its Explotation in Sustainable Agriculture, Vol. I: Crop Diseases, Weeds, and Nematodes. Ed.Kluwer Academic, New York :9-23. [Google Scholar]
- Oulebsir-Mohandkaci, H., S. Khemili-Talbi, F. Benzina and F. Halouane (2015). Isolation and Identification of Entomopathogenic Bacteria from Algerian Desert Soil. Study of Their Effects Against Migratory Locust Locusta migratoria. Egypt. J. Biol. Pest Control, 25(3), 739-746. [Google Scholar]
- Pervot, A.R. (1961). Traité de systématique bactérienne. Ed. Dunod., T1, 471p. phénazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Molecular Plant-Microbe Interactions 5:330-339. [Google Scholar]
- Pierson, E.A. and D. M. Weller (1994). Use of mixture of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. [Google Scholar]
- Plettner E., N. Eliash, N. K. Singh, G. R. Pinnelli and V. Soroker (2017). The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie, 48, 78–92. [Google Scholar]
- Thomashow, L.S. and D.M. Weller (1990). Role of antibiotics and siderophores in biocontrol of take-all disease of Nader Hassan- zadeh, wheat. Plant Soil, 129, 93–99. [Google Scholar]
- Schweighofer, A., and I. Meskiene (2015). Phosphatases in plants in methods in molecular biology (Clifton, N.J.) 1306, 25-46. [Google Scholar]
- Simoes Nunes C. and P. Philipps-Wiemann (2018). Chitinases In book: Enzymes in Human and Animal Nutrition. [Google Scholar]
- Singleton, P. (2005). Bactériologie pour la médecine. La biologie et la Biotechnologie. Ed. Dunod. Paris. 541 p. [Google Scholar]
|