International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2025, Vol. 9(4) 475-490

A Bibliometric Analysis of Molecular Marker Studies on Linum usitatissimum from 1998 to 2025

Gülru Yücel, Ogün Demir, Şahane Funda Arslanoğlu, Behiye Banu Bilgen

pp. 475 - 490   |  DOI: https://doi.org/10.29329/ijiaar.2025.1375.14

Publish Date: December 17, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Linum usitatissimum is an economically important species that is a dicotyledonous, self-pollinated, and annual herbaceous plant. L. usitatissimum provides both oil and fiber, which have a wide range of uses. The genetic variation existing within the genome is important to preserve the genetic resources and establishment of an effective breeding programmes successfully. Several molecular markers have been employed to analyse genetic characterization within the different genotypes of the species or among other plant species, including L. usitatissimum as well. Various molecular markers e.g., SSR, SCOT, RAPD, IRAP, REMAP, ISSR, and iPBS were used to understand the genetic diversity and genotyping of flax varieties, and to characterize relationships in L. usitatissimum. In the presented study, bibliometric analysis was performed to evaluate the published articles related to molecular marker studies in L. usitatissimum from 1998 to 2025 based on the WOS database. Searching the Web of Science Core Collection (WOS) by "Linum usitatissimum’’ and "molecular markers" criterias were analyzed, and the parameters include category areas, subject, country of publication, and country collaborations. According to the research results, a total of 91 published data were identified through research analysis from 1998 to 2025. Plant science, agronomy, and genetics/heredity were the top three categories. Canada and China have been the top contributors to research on molecular markers in L. usitatissimum based on WOS data. This bibliometric study evaluates the molecular marker analyses from different perspectives based on bibliometric analyses, which may be helpful to researchers working on this field and give an idea for possible projects. As a result, this study is the first bibliometric approach that aims to guide future studies by revealing molecular marker studies on flax genotypes between 1998 and 2025.

Keywords: L. usitatissimum, Molecular Marker, Bibliometric analyses


How to Cite this Article?

APA 7th edition
Yucel, G., Demir, O., Arslanoglu, S.F., & Bilgen, B.B. (2025). A Bibliometric Analysis of Molecular Marker Studies on Linum usitatissimum from 1998 to 2025. International Journal of Innovative Approaches in Agricultural Research, 9(4), 475-490. https://doi.org/10.29329/ijiaar.2025.1375.14

Harvard
Yucel, G., Demir, O., Arslanoglu, S. and Bilgen, B. (2025). A Bibliometric Analysis of Molecular Marker Studies on Linum usitatissimum from 1998 to 2025. International Journal of Innovative Approaches in Agricultural Research, 9(4), pp. 475-490.

Chicago 16th edition
Yucel, Gulru, Ogun Demir, Sahane Funda Arslanoglu and Behiye Banu Bilgen (2025). "A Bibliometric Analysis of Molecular Marker Studies on Linum usitatissimum from 1998 to 2025". International Journal of Innovative Approaches in Agricultural Research 9 (4):475-490. https://doi.org/10.29329/ijiaar.2025.1375.14

References
  1. Abbasi Holasou, H., Abdollahi Mandoulakani, B., Jafari, M., & Bernousi I. (2016). Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran. Biologia, 71, 305–315 (2016). https://doi.org/10.1515/biolog-2016-0042 [Google Scholar] [Crossref] 
  2. Ali, F., Nadeem, M. A., Barut, M., Habyarimana, E., Chaudhary, H. J., Khalil, I. H., Alsaleh, A., Hatipoğlu, R., Karaköy, T., Kurt, C., Aasim, M., Sameeullah, M., Ludidi, N., Yang, S. H., Chung, G., & Baloch, F. S. (2020). Genetic diversity, population structure and marker-trait association for 100-seed weight in international safflower panel using SilicoDArT marker information. Plants, 9(5), 652. https://doi.org/10.3390/plants9050652 [Google Scholar] [Crossref] 
  3. Arslanoglu, S.F. and S. Aytac, The Important of Flax (Linum usitatissimum L) In Terms of Health. International Journal of Life Sciences and Biotechnology, 2020. 3(1): p. 95-107. https://doi.org/10.38001/ijlsb.690295 [Google Scholar] [Crossref] 
  4. Aşkar, D. (2025). Genetic Characterization Of Bread Wheat M4 Populations Generated By Gamma Irridation And Investigation Of Brown Rust Resistance Genes. Master Thesis, Tekirdağ Namık Kemal University. [Google Scholar]
  5. Aytac, S., Başbag, S., Arslanoglu, F., Ekinci, R., & Ayan, A.K. (2020). Lif Bitkileri Üretiminde Mevcut Durum ve Gelecek. Ziraat Mühendisleri IX. Teknik Kongresi, Bildiriler Kitabı Cilt 1. In Proceedings of the TMMOB Ziraat Mühendisleri Odası, Ankara, Turkey, 13–17 October 2020; pp. 463–491, ISBN 9786050113211. [Google Scholar]
  6. Baştürk, M.H. (2024). The Effects On Fiber Yield And Quality Of Flax Fiber (Linum usitatissimum var. usitatissimum ) of Nitrogene Fertilizer Doses. Master Thesis, Ondokuz Mayıs University. [Google Scholar]
  7. Begna, T. & Teressa, T. (2024). Genetic Variability and Its Benefits in Crop Improvement: A review. Middle East Journal of Agriculture Research, 13(1),128-136. DOI: 10.36632/mejar/2024.13.1.6. [Google Scholar]
  8. Bilgen, B.B. & Kaya, N. (2023). Microsatellite Markers: The Efficient Method for the Determination of Pollen Contamination in Conifer Seed Orchards. International Journal of Innovative Approaches in Agricultural Research. 7(3), 356-370. https://doi.org/10.29329/ijiaar.2023.602.10 [Google Scholar] [Crossref] 
  9. Bilgen, B.B. & Kaya, N. (2014). Chloroplast DNA variation and pollen contamination in a Pinus brutia Ten. clonal seed orchard: implication for progeny performance in plantations. Turkish Journal of Agriculture and Forestry, 38:540-549. [Google Scholar]
  10. Cerimi, K., Pöther, D.C., & Klar, S. (2025). A bibliometric analysis of fungal volatile organic compounds. Fungal Biology and Biotechnol., 12, 12. https://doi.org/10.1186/s40694-025-00203-x. [Google Scholar] [Crossref] 
  11. Cuiping, C., & Liu, Y. (2024). Genetic diversity and distinctness of flax (Linum usitatissimum L.) based on morphological and simple sequence repeat (SSR) markers. Genet Resour Crop Evol 71, 4763–4777 (2024). https://doi.org/10.1007/s10722-024-01933-4 [Google Scholar] [Crossref] 
  12. Donthu N., Kumar S., Mukherjee D., Pandey N., & Lim W.M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133: 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070 [Google Scholar] [Crossref] 
  13. Fu, Y.B. (2005). Geographic patterns of RAPD variation in cultivated flax. Crop Sci. 45, 1084–1091. doi: 10.2135/cropsci2004.0345 [Google Scholar] [Crossref] 
  14. Gao S., Chen S., Huang R., Guo Y., Qiu C., Long S., Wu Z., Wang., Qiu H., Zhao X., & Wang Y. (2023) Bibliometric Analysis of Research History, Hotspots, and Emerging Trends on Flax with CiteSpace (2000-2022), Journal of Natural Fibers, 20:1, 2194700, https://doi.org/10.1080/15440478.2023.2194700 [Google Scholar] [Crossref] 
  15. Gillies, S., van der Wel, C., Van den Bossche, J., Taves, M. W., Arnott, J., Ward, B. C., et al. (2025). Shapely (Version 2.1.1) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.5597138 [Google Scholar] [Crossref] 
  16. Habibollahi, H., Noormohammadi, Z., & Sheidai, Farahani F. (2018). Genetic Structure of Cultivated Flax (Linum Usitatissimum L.) Based On Retrotransposon-Based Markers. Genetika, 47(3): 1111-1122. https://doi.org/10.2298/GENSR1503111H [Google Scholar] [Crossref] 
  17. Habibollahi, H., Noormohammadi, Z., Sheidai, M., Farahani H., Talebi SM., & Torabizadeh E., (2018b). Assessments of genetic diversity in Iranian flax populations using retrotransposon microsatellite amplification polymorphisms (REMAP) markers. Nucleus 61, 55–60. https://doi.org/10.1007/s13237-017-0218-3. [Google Scholar] [Crossref] 
  18. Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In G. Varoquaux, T. Vaught, & J. Millman (Eds.), Proceedings of the 7th Python in Science Conference (pp. 11–15). [Google Scholar]
  19. Hazneci E., & Arslanaoğlu Ş. F. (2021). Orta Karadeniz Bölgesinde Kırsal Alanlar İçin Keten Bir Şans Mı? Kârlılık Analizi ve Yapılabilirliği. Tekirdağ Ziraat Fakültesi Dergisi, 18 (3), 586-598. https://doi.org/10.33462/jotaf.938556 [Google Scholar] [Crossref] 
  20. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 [Google Scholar] [Crossref] 
  21. Jordahl, K., den Bossche, J. V., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., et al (2020). geopandas/geopandas: v0.8.1 (Version v0.8.1) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.3946761 [Google Scholar] [Crossref] 
  22. Karimova, S., Kholmuradov, E., Juliev, M., Boytoraeva, F., & Nuraliyev, H. (2023). A bibliometric analysis of global publications on flax (Linum usitatissimum L.) disease during 2001-2021. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28 (2), 413-426. https://doi.org/10.1234256/mkutbd.1234256. [Google Scholar] [Crossref] 
  23. Koçak, M. Z., Kaysim, M. G., Aydın, A., Erdinc, C., & Kulak, M. (2023). Genetic diversity of flax genotypes (Linum usitatissimum L.) by using agro-morphological properties and molecular markers. Genetic Resources and Crop Evolution, 70(8), 2279-2306. https://doi.org/10.1007/s10722-023-01608-6 [Google Scholar] [Crossref] 
  24. Nag S., Mitra J., Karmakar P.G. (2015). An Overview on Flax (Linum usitatissimum L.) and its Genetic Diversity. International Journal of Agriculture, Environment and Biotechnology Citation: IJAEB, 8(4): 805-817. DOI Number: 10.5958/2230-732X.2015.00089.3 [Google Scholar]
  25. Majumdar K., Thakur B., Majumdar A. (2022) Natural Fiber Reinforced Concrete: Bibliometric and Network Analyses to Delineate the Current Status and Future Pathways, Journal of Natural Fibers, 19:17, 15963-15983, https://doi.org/10.1080/15440478.2022.2140323 [Google Scholar] [Crossref] 
  26. McDill, J., Repplinger, M., Simpson, B.B., & Kadereit, J.W. (2009). The Phylogeny of Linum and Linaceae Subfamily Linoideae, with Implications for Their Systematics, Biogeography, and Evolution of Heterostyly. Systematic Botany, 34(2), 386–405. https://doi.org/10.1600/036364409788606244. [Google Scholar] [Crossref] 
  27. McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 51–56). https://doi.org/10.25080/Majora-92bf1922-00a [Google Scholar] [Crossref] 
  28. Mueller, A. C. (2020). Wordcloud: A little word cloud generator in Python [Computer software]. GitHub. https://github.com/amueller/word_cloud [Google Scholar]
  29. Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatiooğlu R., Ahmad F., Alsaleh A., Labhane N., Özkan H, Chung G. & Baloch, F. S. (2017). DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261–285. https://doi.org/10.1080/13102818.2017.1400401. [Google Scholar] [Crossref] 
  30. Nair, R.J., & Pandey, M.K. (2021). Role of Molecular Markers in Crop Breeding: A Review. Agricultural Reviews. DOI: 10.18805/ag.R-2322. [Google Scholar]
  31. Nwanko CO., Mahachi J., Olukani DO., Musonda I (2023). Natural fibres and biopolymers in FRP composites for strengthening concrete structures: A mixed review. Construction and Bulding Materials, 363, 129661. https://doi.org/10.1016/j.conbuildmat.2022.129661. [Google Scholar] [Crossref] 
  32. Rachinskaya, O.A., Lemesh, V.A., Muravenko, O.V., Yurkevich O.Yu., Guzenko E.V., Bol’sheva N.L., Bogdanova M.V., Samatadze T.E., Popov K.V., Malyshev S.V., Shostak N.G., Heller K., Hotyleva L.V., Zelenin A.V. (2011). Genetic polymorphism of flax Linum usitatissimum based on the use of molecular cytogenetic markers. Russian Journal of Genetics, 47(1), 56–65 (2011). https://doi.org/10.1134/S1022795411010108. [Google Scholar] [Crossref] 
  33. Sarwat, M., Nabi, G., Das, S., & Srivastava, P.S. (2011). Molecular markers in medicinal plant biotechnology: past and present. Critical Reviews in Biotechnology, 2011, 1–19. DOI: 10.3109/07388551.2011.551872. [Google Scholar]
  34. Shawahna, R. & Nairat, Q. (2021). Research productivity in the field of physical exercise and epilepsy: A bibliometric analysis of the scholarly literature with qualitative synthesis. Epilepsy & Behavior, 121(Pt A):108058.https://doi.org/10.1016/j.yebeh.2021.108058 [Google Scholar] [Crossref] 
  35. Singh KK, Mridula, D., Rehal , J. & Barnwal P. (2011) Flaxseed: A Potential Source of Food, Feed and Fiber, Critical Reviews in Food Science and Nutrition, 51(3), 210-222, https://doi.org/10.1080/10408390903537241 [Google Scholar] [Crossref] 
  36. Smýkal, P., Bačová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A. H., & Pavelek, M. (2011). Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics, 122, 1385-1397. https://doi.org/10.1007/s00122-011-1539-2 [Google Scholar] [Crossref] 
  37. Sütcü, T., Bilgen, B.B., & Tuna, M. (2022). Analysis of Genetic Diversity Among Onobrychis Accessions with High Agronomic Performance by Simple Sequence Repeat (SSR) Markers. Mol Biol Rep., 49,5659-5668. https://doi.org/10.1007/s11033-022-07584-x. [Google Scholar] [Crossref] 
  38. Stàgel, A., Portis E, Toppino, L., Rotino, G.L, & Lanteri S. (2008). Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics, 9:357. https://doi.org/10.1186/1471-2164-9-357 [Google Scholar] [Crossref] 
  39. Tadesse T., Singh H. and Weyessa, B. (2009). Genetic Divergence in Linseed Germplasm. J. Innov. Dev. Strategy. 3(2):13-20. [Google Scholar]
  40. Ulcay, S. (2023). Histo-Anatomical Characteristics of Some Endemic Species of Linum (Linaceae). Journal of the Institute of Science and Technology, 13(2), 925-931. https://doi.org/10.21597/jist.1214429 [Google Scholar] [Crossref] 
  41. Uysal, H., Fu, Y. B., Kurt, O., Peterson, G. W., Diederichsen, A., & Kusters, P. (2010). Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genetic Resources and Crop Evolution, 57, 1109-1119. https://doi.org/10.1007/s10722-010-9551-y. [Google Scholar] [Crossref] 
  42. Wakjira, A., Viljoen, C., &Labuschagne, M. (2005). Analysis of genetic diversity in linseed using AFLP markers. Ethiopian J. Sci., 28(1), 41–50. https://doi.org/10.4314/sinet.v28i1.18230 [Google Scholar] [Crossref] 
  43. Wang, Z., Hobson, N., Galindo, L., Zhu, S., Shi, D., McDill, J., Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GK, Wang J, Deyholos MK (2012). The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. The Plant Journal, 72(3), 461–473. https://doi.org/10.1111/j.1365-313X.2012.05093.x [Google Scholar] [Crossref] 
  44. Wani, Z.A., Akhter, F., Ridwan, Q., Rawat, Y.S., Ahmad, Z., & Pant, S. (2023). A Bibliometric Analysis of Studies on Plant Endemism during the Period of 1991–2022. Journal of Zoological and Botanical Gardens. 2023; 4(4):692-710. https://doi.org/10.3390/jzbg4040049 [Google Scholar] [Crossref] 
  45. Waskom, M. L. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021 [Google Scholar] [Crossref] 
  46. Yardibi, F, Firat, M. Z, & Teke, E. Ç (2021). Trend topics in animal science: a bibliometric analysis using CiteSpace. Turkish Journal of Veterinary & Animal Sciences 45 (5): 833-840. https://doi.org/10.3906/vet-2001-103 [Google Scholar] [Crossref] 
  47. Yılmaz S., Uzun A (2019). Keten Tarımı. ISBN: 978-605-2207-25-3. [Google Scholar]
  48. Yılmaz Ö., Kaynak G., Vural M. (2003). A new taxon of Linum (Linaceae) from NW Anatolia, Turkey. Ann. Bot. Fennici, 40: 147–150. [Google Scholar]
  49. Yorgancılar M., Yakışır E., Tanur Erkoyuncu M (2015). Moleküler Markörlerin Bitki Islahında Kullanımı. Journal of Bahri Dagdas Crop Research, 4 (2),1-12. [Google Scholar]
  50. Yaldız, G., Camlica, M., Nadeem, M. A., Nawaz, M. A., & Baloch, F. S. (2018). Genetic diversity assessment in Nicotiana tabacum L. with iPBS-retrotransposons. Turkish Journal of Agriculture and Forestry, 42, 154-164. doi:10.3906/tar-1708-32 [Google Scholar] [Crossref] 
  51. Yurkevich, O.Y., Kirov, I.V., Bolsheva, N.L., Rachinskaya, O.A, Grushetskaya, Z.E., Zoschuk, S.A., Samatadze, T.E., Bogdanova, M.V., Lemesh, V.A., Amosova, A.V., & Muravenko O.V. (2017) Integration of Physical, Genetic, and Cytogenetic Mapping Data for Cellulose Synthase (CesA) Genes in Flax (Linum usitatissimum L.). Frontiers in Plant Science. 8:1467. https://doi.org/10.3389/fpls.2017.01467 [Google Scholar] [Crossref]