International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Research article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2025, Vol. 9(4) 301-315

Genetic Characterization and Brown Rust Resistance Screening of Gamma Irradiated Bread Wheat M4 Populations by DNA Markers

Deniz Aşkar, Behiye Banu Bilgen

pp. 301 - 315   |  DOI: https://doi.org/10.29329/ijiaar.2025.1375.3

Publish Date: December 17, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

The rapid increase in the world population has increased the demand for wheat, and breeding studies that enable the development of high-yield varieties resistant to various stress conditions have accelerated to meet this demand. Brown rust disease poses a serious threat to sustainable wheat cultivation. Classical breeding studies are effectively used in variety development in important agricultural plant species, supported by mutation and molecular breeding studies. In recent years, retrotransposon-based molecular markers have been widely used to better understand the variation in genotypes obtained in breeding processes. In this study, 15 retrotransposon based molecular markers, iPBS primers, were used for molecular characterization in M4 bread wheat populations exposed to different doses of gamma radiation. In addition, the presence of 8 Lr genes was examined in order to determine resistance to brown rust disease, which is one of the important causes of yield loss in various wheat varieties. A total of 102 bands belonging to iPBS primers were observed in 35 genotypes belonging to the seven bread wheat varieties analyzed. The average polymorphism rate of the bread wheat populations used in the study was calculated as relatively low (5.88%). It was observed that the studied wheat varieties had six Lr gene regions (Lr13, Lr19, Lr22a, Lr24, Lr37, and Lr47) except for the Lr14a and Lr34 genes from brown rust resistance genes. The molecular data obtained from the study will provide significant information for using mutation breeding and molecular breeding in classical breeding studies in bread wheat.

Keywords: iPBS, Lr Genes, Molecular Markers, Retrotransposons, Triticum aestivum


How to Cite this Article?

APA 7th edition
Askar, D., & Bilgen, B.B. (2025). Genetic Characterization and Brown Rust Resistance Screening of Gamma Irradiated Bread Wheat M4 Populations by DNA Markers. International Journal of Innovative Approaches in Agricultural Research, 9(4), 301-315. https://doi.org/10.29329/ijiaar.2025.1375.3

Harvard
Askar, D. and Bilgen, B. (2025). Genetic Characterization and Brown Rust Resistance Screening of Gamma Irradiated Bread Wheat M4 Populations by DNA Markers. International Journal of Innovative Approaches in Agricultural Research, 9(4), pp. 301-315.

Chicago 16th edition
Askar, Deniz and Behiye Banu Bilgen (2025). "Genetic Characterization and Brown Rust Resistance Screening of Gamma Irradiated Bread Wheat M4 Populations by DNA Markers". International Journal of Innovative Approaches in Agricultural Research 9 (4):301-315. https://doi.org/10.29329/ijiaar.2025.1375.3

References
  1. Afzal, S., Tariq, M. A., Khanum, A., Haroon, A., Arshad Hussain, M., Chaudary, A. U. R., Batool, M., Bashir, M. A., Alajmi, R., Essa, M., Ejaz, S., & Samreen, S. (2023). Grasp of wheat leaf rust through plant leaves extract and bioagent as an eco-friendly measure. Journal of King Saud University-Science, 35(2), 102452. [Google Scholar]
  2. Ahumada-Flores, S., Gómez Pando, L. R., Parra Cota, F. I., de la Cruz Torres, E., Sarsu, F., & de los Santos Villalobos, S. (2021). Technical note: Gamma irradiation induces changes of phenotypic and agronomic traits in wheat (Triticum turgidum ssp. durum). Applied Radiation and Isotopes, 167, 109490. [Google Scholar]
  3. Alkan, M., Göre, M.E., Bayraktar, H., & Özer, G. (2019). Kışlık buğdaylarda kök ve kökboğazı çürüklüğüne sebep olan Fusarium spp. izolatları arasındaki genetik varyasyonun retrotranzpozon temelli iPBS markörleri ile incelenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 5(2), 250-259. [Google Scholar]
  4. Aly, A. A., Eliwa, N. E., & Maraei, R. W. (2019). Physiological and molecular studies on ISSR in two wheat cultivars after exposing to gamma radiation. ScienceAsia, 45(5), 436-445. [Google Scholar]
  5. Arystanbekkyzy, M., Nadeem, M. A., Aktaş, H., Yeken, M. Z., Zencirci, N., Nawaz, M. A., Ali, F., Haider, M. S., Tunc, K., Chung, G., & Baloch, F. S. (2019). Phylogenetic and taxonomic relationship of Turkish wild and cultivated emmer (Triticum turgidum ssp. dicoccoides) revealed by iPBS-retrotransposons markers. International Journal of Agriculture & Biology, 21, 155-163. [Google Scholar]
  6. Bakar, U. B. (2023). Gama ışınlaması ile oluşturulan ekmeklik buğday (l.) m4 populasyonlarının bazı morfolojik ve agronomik özelliklerindeki değişimlerin belirlenmesi (Yüksek Lisans Tezi), Tekirdağ Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, Tekirdağ. [Google Scholar]
  7. Balfourier, F., Bouchet, S., Robert, S., De Oliveira, R., Rimbert, H., Kitt, J., & Choulet, F. (2019). Worldwide phylogeography and history of wheat genetic diversity. Science Advances, 29, 5(5), eaav0536. [Google Scholar]
  8. Baran, N. (2024). Assessing the population structure and genetic diversity of wheat germplasm with the iPBS-retrotransposons marker system. Crop and Pasture Science, 75(10). [Google Scholar]
  9. Başer, İ., Bilgen, B. B., Balkan, A., Korkut, Z. K., Bilgin, O., & Gülfidan, E. (2020). Comparison of bread wheat genotypes for leaf rust resistance genes. Journal of Agricultural Sciences, 26(1), 22-31. [Google Scholar]
  10. Bilgen, B. B., Yürük, B., & Nasirian, H. (2023). Brown rust resistance screening and molecular characterization of wheat cultivars by molecular markers. Turkish Journal of Agriculture and Forestry, 47(5), 787-800. [Google Scholar]
  11. Çelik, A. D., & Sarıoğlu, T. (2023). Buğday üretiminde girdi kullanım düzeyinin ve son yıllarda girdi kullanımında meydana gelen değişikliklerin belirlenmesi: Hatay ili örneği. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 28(3), 606-615. [Google Scholar]
  12. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. [Google Scholar]
  13. Demirel, F. (2020). Genetic diversity of emmer wheats using iPBS markers. European Journal of Science and Technology, (20), 640-646. [Google Scholar]
  14. Doyle, J.J., & Doyle, J.I. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13-15. [Google Scholar]
  15. El-Orabey, W. M., Hamwieh, A., & Ahmed, S. M. (2019). Molecular markers and phenotypic characterization of adult plant resistance genes Lr 34, Lr 46, Lr 67 and Lr 68 and their association with partial resistance to leaf rust in wheat. Journal of Genetics, 98(3), 1-12. [Google Scholar]
  16. FAO. (2023). FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations, Rome, Italy. [Google Scholar]
  17. Guzman, C., & Ibba, M. I. (2023). Wheat quality testing in a breeding program. ICC Handbook of 21st Century Cereal Science and Technology (207-213). Academic Press. [Google Scholar]
  18. Güngör, H., Ilhan, E., Kasapoğlu, A. G., Filiz, E., Pour, A. H., Valchev, D., Valcheva, D., Haliloğlu, K., and Dumlupinar, Z. (2022). Genetic diversity and population structure of Barley cultivars released in Turkey and Bulgaria using iPBS-retrotransposon and SCoT markers. Journal of Agricultural Sciences, 2 (2), 239-250. [Google Scholar]
  19. Haliloğlu, K., Türkoğlu, A., Öztürk, A., Niedbała, G., Niazian, M., Wojciechowski, T., & Piekutowska, M. (2023). Genetic diversity and population structure in bread wheat germplasm from Türkiye using iPBS-Retrotransposons-Based markers. Agronomy, 13(1), 255. [Google Scholar]
  20. Helguera, M., Khan, I. A., & Dubcovsky, J. (2000). Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theoretical and Applied Genetics, 100(7), 1137-1143. [Google Scholar]
  21. Helguera, M., Khan, I. A., Kolmer, J., Lijavetzky, D., Zhong-qi, L., & Dubcovsky, J. (2003). PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science, 43(5), 1839-1847. [Google Scholar]
  22. Kalendar, R., Flavell, A. J., Ellis, T. H. N., Sjakste, T., Moisy, C., & Schulman, A. H. (2011). Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, 106(4), 520-530. [Google Scholar]
  23. Kiani, D., Borzouei, A., Ramezanpour, S., & Saadati, S. (2022). Application of gamma irradiation on morphological, biochemical, and molecular aspects of wheat (Triticum aestivum L.) under different seed moisture contents. Scientific Reports, 12, 11082. [Google Scholar]
  24. Kiraz, H., Yüce, İ., Kekilli, Ö., Ocaktan, H., Topsakal, M., Gürocak, M. N., Osanmaz, H., Kilinc, F. M., Başkonuş, T., & Dumlupınar, Z. (2019). Seri 82 ekmeklik buğday M3 mutantlarının fonksiyonel markörlerle karakterizasyonu. Black Sea Journal of Agriculture, 2(4), 194-202. [Google Scholar]
  25. Kizilgeci, F., Bayhan, B., Türkoğlu, A., Haliloglu, K., & Yildirim, M. (2022). Exploring genetic diversity and population structure of five Aegilops species with inter-primer binding site (iPBS) markers. Molecular Biology Reports, 49(9), 8567-8574. [Google Scholar]
  26. Li, J., Yang, J., Li, Y., & Ma, L. (2020). Current strategies and advances in wheat biology. The Crop Journal, 8(6), 879-891. [Google Scholar]
  27. Liu, Y., Gebrewahid, T. W., Zhang, P., Li, Z. & Liu, D. (2021). Identification of leaf rust resistance genes in common whet varieties from Chine and foreign countries. Journal of Integrative Agriculture, 20(5), 1302-1313. [Google Scholar]
  28. Marzang, N., Mandoulakani, B., Shaaf, S., Ghadimzadeh, M., Bernousi, I., Abbasi Holasou, H., & Sadeghzadeh, B. (2020). IRAP and REMAP-Based genetic diversity among Iranian, Turkish, and ınternational durum wheat (Triticum turgidum L.) cultivars. Journal of Agricultural Science and Technology, 22(1), 271-285. [Google Scholar]
  29. Mirzaei, S. (2021). Application of molecular markers in plant sciences; An overview. Central Asian Journal of Plant Science Innovation, 1(4), 192-200. [Google Scholar]
  30. Mustafa, G., Alam, M., Khan, S. U., Naveed, M., & Mumtaz, A. S. (2013). Leaf rust resistance in semi dwarf wheat cultivars: a conspectus of post green revolution period in Pakistan. Pakistan Journal of Botany, 45, 415-422. [Google Scholar]
  31. Nadeem, M. A. (2021). Deciphering the genetic diversity and population structure of Turkish bread wheat germplasm using iPBS-retrotransposons markers. Molecular Biology Reports, 48(10), 6739-6748. [Google Scholar]
  32. Nei, M. (1987). Molecular evalutionary genetics. Columbia University Press, New York. 512 pp. [Google Scholar]
  33. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: Genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295. [Google Scholar]
  34. Pour, A. H., Özkan, G., Nalcı, Ö., & Haliloğlu, K. (2019). Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses. Turkish Journal of Botany, 43(1), 27-37. [Google Scholar]
  35. Prins, R., Groenewald, J. Z., Marais, G. F., Snape, J. W., & Koebner, R. M. D. (2001). AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theoretical and Applied Genetics, 103(4), 618-624. [Google Scholar]
  36. Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., & Ganal, M. W. (1998). A Microsatellite map of wheat. Genetics, 149(4), 2007-2023. [Google Scholar]
  37. Safiyar, S., Aalami, A., Mandoulakani, B. A., Rabiei, B., & Kordrostami, M. (2022). Genetic diversity of Aegilops tauschii accessions and its relationship with tetraploid and hexaploid wheat using retrotransposon-based molecular markers. Cereal Research Communications, 50(2), 219-226. [Google Scholar]
  38. Sağır, F., & Kara, B. (2021). Eski ve son yıllarda tescil edilmiş bazı ekmeklik buğday çeşitlerinin tane verimi ve başak özelliklerinin karşılaştırılması. Gaziosmanpaşa Bilimsel Araştırma Dergisi (GBAD), 10(2), 36-42. [Google Scholar]
  39. Seyfarth, R., Feuillet, & C. Schachermayr, G. (2000). Molecular mapping of the adult-plant rust resistance gene Lr13 in wheat Triticum aestivum L. J. Genet. Breed., 54, 193-198. [Google Scholar]
  40. Shi, Y., Zhu, H., Zhang, J., Bao, M., & Zhang, J. (2023). Development and validation of molecular markers for double flower of Prunus mume. Scientia Horticulturae, 310, 111761. [Google Scholar]
  41. Sipahi, H., & Yumurtacı, A. (2020). Retrotranspozon temelli moleküler belirteçler kullanılarak Türk arpa (Hordeum vulgare L.) çeşitlerinin genomik karakterizasyonu. Mediterranean Agricultural Sciences, 33(2), 275-283. [Google Scholar]
  42. Tagimanova, D. S., Alzhanova, A., Khapilina, O., & Kalendar, R. (2014). Use IRAP and iPBS molecular markers for genetic analysis of wheat varieties. Eurasian Journal of Applied Biotechnology, 4. [Google Scholar]
  43. Vida G., Gal M., Uhrin, A., Veisz O., Wang Z., Kiss T., Karsai I. & Bedo, Z. (2010). Application of molecular markers in breeding for leaf rust resistance in wheat. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 65-71. [Google Scholar]
  44. Xu, X. F., Li, D. D., Liu, Y., Gao, Y., Wang, Z. Y., Ma, Y. C., Yang, S., Cao, Y. Y., Xuan, Y. H., & Li, T. Y. (2017). Evaluation and identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat lines from Gansu Province in China. Peer J, 5, e4146. [Google Scholar]