International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Research article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2025, Vol. 9(3) 204-216

Assessment of Tuber Damage in Potato Harvesting as Affected by Variety, Harvesting Speed, and Physical Characteristics

Ferhat Gül, Hüseyin DURAN

pp. 204 - 216   |  DOI: https://doi.org/10.29329/ijiaar.2025.1356.4

Publish Date: September 30, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

As the global population continues to grow each year, the demand for basic foodstuffs is also increasing. Among these, potatoes are considered one of the most essential crops, and their long-term storage is critical to extending their usability. A key criterion for effective potato storage is ensuring that the tubers remain free from mechanical damage. Determining the rate of mechanical damage in potato tubers during harvesting is a critical factor affecting both yield and storage longevity. Therefore, this study aimed to assess the extent of such damage during the harvesting process. In this study, mechanical damage rates in potato tubers were evaluated using three different cultivars, Hermes (P1), Jelly (P2), and Madeleine (P3), and two harvesting speeds, 2 km/h (S1) and 3 km/h (S2). Additionally, the geometric mean diameter (GMD), tuber volume (TV), tuber surface area (TSA), and sphericity (SP) of the tubers were analyzed. The results indicated that the mechanical damage (MD) rate was highest in cultivars P1 and P2 (6.16%) and lowest in cultivar P3 (4.86%). Regarding the tractor forward speeds, the MD rate was 5.44% at speed S1 and increased to 6.01% at speed S2. Despite cultivar P3 exhibiting higher values of geometric mean diameter (GMD), tuber volume (TV), and tuber surface area (TSA), it demonstrated greater resistance to mechanical damage due to its lower MD rate. Based on the speed levels tested, it was concluded that the lower forward speed (S1) is preferable for harvesting, as it resulted in reduced mechanical damage compared to S2.

Keywords: Potato Tuber, Mechanical Damage, Harvesting Speed, Physical Characteristics


How to Cite this Article?

APA 7th edition
Gul, F., & DURAN, H. (2025). Assessment of Tuber Damage in Potato Harvesting as Affected by Variety, Harvesting Speed, and Physical Characteristics. International Journal of Innovative Approaches in Agricultural Research, 9(3), 204-216. https://doi.org/10.29329/ijiaar.2025.1356.4

Harvard
Gul, F. and DURAN, H. (2025). Assessment of Tuber Damage in Potato Harvesting as Affected by Variety, Harvesting Speed, and Physical Characteristics. International Journal of Innovative Approaches in Agricultural Research, 9(3), pp. 204-216.

Chicago 16th edition
Gul, Ferhat and Huseyin DURAN (2025). "Assessment of Tuber Damage in Potato Harvesting as Affected by Variety, Harvesting Speed, and Physical Characteristics". International Journal of Innovative Approaches in Agricultural Research 9 (3):204-216. https://doi.org/10.29329/ijiaar.2025.1356.4

References
  1. Abd Elhay, Y. B. (2017). Determination of some physical and mechanical properties of potato tubers related to design of sorting, cleaning and grading machine. Misr Journal of Agricultural Engineering, 34(3), 1375-1388. [Google Scholar]
  2. Ahangarnezhad, N., Najafi, G., and Jahanbakhshi, A. (2019). Determination of the physical and mechanical properties of a potato (the Agria variety) in order to mechanise the harvesting and post-harvesting operations. Research in Agricultural Engineering, 65(2). [Google Scholar]
  3. Aktas, T., Polat, R., and Atay, U. (2007). Comparison of mechanical properties of some selected almond cultivars with hard and soft shell under compression loading. Journal of Food Process Engineering, 30(6), 773-789. [Google Scholar]
  4. Al-Dosary, N. M. N. (2016). Potato harvester performance on tuber damage at the eastern of Saudi Arabia. Agricultural Engineering International: CIGR Journal, 18(2), 32-42. [Google Scholar]
  5. Almady, S. S., Al-Hamed, S. A., Marey, S. A., Al-Sager, S. M., and Aboukarima, A. M. (2024). An assessment of some mechanical properties of harvested potato tubers cv. Spunta. Agronomy, 14(6), 1116. [Google Scholar]
  6. Altuntaş, E. (2001). Yarı Otomatik Patates Hasat Makinasında ilerleme Hızlarının Toprak Özellikleri, Yumru Zedelenmesi, Hasat Kaybı ve İş Verimine Etkilerinin Belirlenmesi. Journal of Agricultural Sciences, 7(02). [Google Scholar]
  7. Anonymous 2024. Patates Ürün Raporu. Tarım ve Orman Bakanlığı. https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2024%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Patates%20%C3%9Cr%C3%BCn%20Raporu%202024-399%20TEPGE.pdf/ accessed date: 17 September 2025. [Google Scholar]
  8. Bal, H. (1990). Patates hasatında yumru kayıpları ve zedelenmenin azaltılması. 4. Uluslararası Tarımsal Mekanizasyon ve Enerji Sempozyumu.1-4 Ekim 1990. Adana. [Google Scholar]
  9. Bentini, M., Caprara, C., and Martelli, R. (2006). Harvesting damage to potato tubers by analysis of impacts recorded with an instrumented sphere. Biosystems engineering, 94(1), 75-85. [Google Scholar]
  10. FAO. (2020). Food and Agriculture Organization of the United Nations (FAO) Bitkisel üretim verileri. http://www.fao.org/faostat/en/data/QC (accessed date :4 April 2020). [Google Scholar]
  11. FAO. (2022). Food and Agriculture Organization of the United Nations (FAO) Bitkisel üretim verileri. http://www.fao.org/home/en/ accessed date: 10 October 2022. [Google Scholar]
  12. Fróna, D., Szenderák, J. and Harangi-Rákos, M. (2019). The challenge of feeding the world. Sustainability, 11(20), 5816. [Google Scholar]
  13. Gulati, S. (2019). Design and development of two row tractor operated potato combine harvester. Potato Journal, 46(1). [Google Scholar]
  14. Güler, İ. (2011). Patates hasat makinalarında yumru zedelenmelerinin değerlendirilmesi ve çözüm önerileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 42(2), 181-187. [Google Scholar]
  15. Issa, I. I., Zhang, Z. G., El-Kolaly, W. M. F. F., Yang, X., and Wang, H. (2020). Design, ansys analysis and performance evaluation of potato digger harvester. International Agricultural Engineering Journal, 29(1), 60-73. [Google Scholar]
  16. Jennings, S. A., Koehler, A. K., Nicklin, K. J., Deva, C., Sait, S. M., and Challinor, A. J. (2020). Global potato yields increase under climate change with adaptation and CO2 fertilisation. Frontiers in Sustainable Food Systems, 4, 519324. [Google Scholar]
  17. Kadakoğlu, B., and Karlı, B. (2021). Türkiye’de patates üretimi, ihracatı ve destekleme politikalarının değerlendirilmesi. Ziraat Fakültesi Dergisi, 16(1), 7-16. [Google Scholar]
  18. Mazhar, K. (2017). Biyolojik ürünlerin fiziksel özellikleri. İzmir Güven Kitapevi. [Google Scholar]
  19. Misener, G. C., and Tai, G. C. C. (1993). Relative resistance of potato varieties to serious mechanical injury. Canadian Agricultural Engineering, 35(4), 289. [Google Scholar]
  20. Mohsenin, N. N. (1986). Physical properties of plant and animal materials: second ed. Gordon and Breach Science Publishers, New York. [Google Scholar]
  21. Nasr, G. E. D. M., Rostom, M. N., Hussein, M. M. M., Farrag, A. E. F., & Morsy, M. F. A. (2019). Development of suitable potato crop harvester for small holdings. Agricultural Engineering International: CIGR Journal, 21(2). [Google Scholar]
  22. Öztürk, E. and Polat, T. (2017). Tohumluk patates yetiştiriciliği ve önemi. Alinteri Journal of Agriculture Science, 32(1), 99-104. [Google Scholar]
  23. Patel, M. B., Nath, E., and Mayani, J. (2018). Evaluation of physical and mechanical properties of fresh potato. Int. J. Chem. Stud, 6(5), 1454-1459. [Google Scholar]
  24. Soethoudt, H., and Castelein, B. (2021). Food loss-reducing intervention strategies for potato smallholders in kenya—a positive business case with reduced greenhouse gas emissions. Agronomy, 11(9), 1857. [Google Scholar]
  25. Spang, E. S., and Stevens, B. D. (2018). Estimating the blue water footprint of in-field crop losses: A case study of US potato cultivation. Sustainability, 10(8), 2854. [Google Scholar]
  26. Specht, A. (1966). Beschädigungsarme Kartoffelernte. Landtechnik, H, ½, 28-33, München. [Google Scholar]
  27. Varnamkhasti, M. G., Mobli, H., Jafari, A., Keyhani, A. R., Soltanabadi, M. H., Rafiee, S., and Kheiralipour, K. (2008). Some physical properties of rough rice (Oryza Sativa L.) grain. Journal of cereal Science, 47(3), 496-501. [Google Scholar]
  28. Zhang, H., Fen, X. U., and Yu, W. U. (2017). Progress of potato staple food research and industry development in China. Journal of integrative agriculture, 16(12), 2924-2932. [Google Scholar]