International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2025, Vol. 9(3) 259-278

Effects of Phson Plant Metabolism and Development

Mehmet Akıncı, İlker Dibirdik, Sergun Dayan

pp. 259 - 278   |  DOI: https://doi.org/10.29329/ijiaar.2025.1356.8

Publish Date: September 30, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

Protein hydrolysates (PHs) are gaining increasing attention as sustainable biostimulants in agriculture due to their ability to improve plant performance under both optimal and stressful conditions. These compounds, derived from plant or animal proteins, contain a mixture of amino acids and peptides that influence numerous physiological and biochemical processes. Recent studies have shown that PHs play a regulatory role in primary metabolism by modulating enzyme activity and gene expression involved in nitrogen and carbon pathways. They also impact secondary metabolism, enhancing the biosynthesis of phenolics, flavonoids, and other compounds that contribute to stress tolerance and crop quality. In addition, PHs applied as seed treatments or foliar sprays have been reported to stimulate germination, improve seedling establishment, and promote nutrient uptake. Their beneficial effects extend to yield and quality traits, including increases in biomass, fruit set, phytochemical content, and reductions in nitrate accumulation in leafy vegetables. Overall, PHs represent promising biostimulant tools for sustainable crop production, combining growth promotion, improved nutrient use efficiency, and enhanced resilience to abiotic stresses.

Keywords: Protein Hydrolysates, Plant Metabolism, Bioactive Amino Acids and Peptides


How to Cite this Article?

APA 7th edition
Akinci, M., Dibirdik, I., & Dayan, S. (2025). Effects of Phson Plant Metabolism and Development. International Journal of Innovative Approaches in Agricultural Research, 9(3), 259-278. https://doi.org/10.29329/ijiaar.2025.1356.8

Harvard
Akinci, M., Dibirdik, I. and Dayan, S. (2025). Effects of Phson Plant Metabolism and Development. International Journal of Innovative Approaches in Agricultural Research, 9(3), pp. 259-278.

Chicago 16th edition
Akinci, Mehmet, Ilker Dibirdik and Sergun Dayan (2025). "Effects of Phson Plant Metabolism and Development". International Journal of Innovative Approaches in Agricultural Research 9 (3):259-278. https://doi.org/10.29329/ijiaar.2025.1356.8

References
  1. Amirkhani, M., Netravali, A. N., Huang, W., & Taylor, A. G. (2016). Investigation of soy protein–based biostimulant seed coating for broccoli seedling and plant growth enhancement. HortScience, 51(9), 1121-1126. [Google Scholar]
  2. Apone, F., Tito, A., Carola, A., Arciello, S., Tortora, A., Filippini, L., Monoli, I., Cucchiara, M., Gibertoni, S., & Chrispeels, M. J. (2010). A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells. Journal of biotechnology, 145(4), 367-376. [Google Scholar]
  3. Atero-Calvo, S., Navarro-León, E., Polo, J., & Ruiz, J. M. (2025). Physiological Efficacy of the Amino Acid-Based Biostimulants Pepton 85/16, Pepton Origin, and Nutriterra in Lettuce Grown under Optimal and Reduced Synthetic Nitrogen Fertilization. Frontiers in plant science, 16, 1645768. [Google Scholar]
  4. Ayaz, A., & Yurttagül, M. (2006). Sebzelerin nitrat ve nitrit içeriklerine etki eden faktörler. Beslenme ve Diyet Dergisi, 34(2), 51-64. [Google Scholar]
  5. Baglieri, A., Cadili, V., Monterumici, C. M., Gennari, M., Tabasso, S., Montoneri, E., Nardi, S., & Negre, M. (2014). Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Scientia Horticulturae, 176, 194-199. [Google Scholar]
  6. Bayat, R. A., Kuşvuran, Ş., Ellialtıoğlu, Ş., & Üstün, A. S. (2014). Tuz Stresi Altındaki Genç Kabak (Cucurbita pepo L. ve C. moschata Poir.) Bitkilerine Uygulanan Prolin’in, Antioksidatif Enzim Aktiviteleri Üzerine Etkisi. Türk Tarım ve Doğa Bilimleri Dergisi, 1(1), 25-33. [Google Scholar]
  7. Berechet, M. D., Gaidau, C., & Simion, D. (2024). Testing And Assessing Functionality Of Keratin Hydrolysate With Agricultural Application On Wheat Seeds. Revista de Pielarie Incaltaminte, 24, 1. [Google Scholar]
  8. Bouhamed, S. B. H., & Kechaou, N. (2017). Kinetic study of sulphuric acid hydrolysis of protein feathers. Bioprocess Biosyst Eng, 40(5), 715-721. https://doi.org/10.1007/s00449-017-1737-7 [Google Scholar] [Crossref] 
  9. Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant, 383(1), 3-41. [Google Scholar]
  10. Canellas, L. P., Canellas, N. A., Val, F., Spaccini, R., Mazzei, P., & Olivares, F. L. (2024). Changes in amino acids profile and uptake on maize seedlings treated with protein hydrolysates and humic substances. Nitrogen, 5(2), 439-454. [Google Scholar]
  11. Cavani, L., & Ciavatta, C. (2007). Attività biostimolante negli idrolizzati proteici. L'informatore Agrario, 44, 48-54. [Google Scholar]
  12. Cerdán, M., Sánchez-Sánchez, A., Oliver, M., Juárez, M., & Sánchez-Andreu, J. (2008). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. IV Balkan Symposium on Vegetables and Potatoes 830, [Google Scholar]
  13. Choi, S., Colla, G., Cardarelli, M., & Kim, H.-J. (2022). Effects of plant-derived protein hydrolysates on yield, quality, and nitrogen use efficiency of greenhouse grown lettuce and tomato. Agronomy, 12(5), 1018. [Google Scholar]
  14. Cicero, A. F., Fogacci, F., & Colletti, A. (2017). Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. British journal of pharmacology, 174(11), 1378-1394. [Google Scholar]
  15. Ciriello, M., Campana, E., Kyriacou, M. C., El-Nakhel, C., Graziani, G., Cardarelli, M., Colla, G., De Pascale, S., & Rouphael, Y. (2023). Hydropriming and plant-based protein hydrolysate biostimulants impact the primary and secondary metabolites of brassicaceous microgreens differentially. ITALUS HORTUS, 30(3), 37-47. [Google Scholar]
  16. Ciriello, M., Formisano, L., Kyriacou, M. C., Colla, G., Graziani, G., Ritieni, A., De Pascale, S., & Rouphael, Y. (2022). Biostimulatory action of vegetal protein hydrolysate compensates for reduced strength nutrient supply in a floating raft system by enhancing performance and qualitative features of “Genovese” Basil. Frontiers in plant science, 13, 906686. [Google Scholar]
  17. Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28-38. https://doi.org/10.1016/j.scienta.2015.08.037 [Google Scholar] [Crossref] 
  18. Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in plant science, 5, 448. [Google Scholar]
  19. Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715. [Google Scholar]
  20. Costa, O. Y., Chang, J., Li, J., van Lith, W., & Kuramae, E. E. (2024). Unraveling the impact of protein hydrolysates on rhizosphere microbial communities: Source matters. Applied Soil Ecology, 196, 105307. [Google Scholar]
  21. Crawford, D. L., Lynch, J. M., Whipps, J. M., & Ousley, M. A. (1993). Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Applied and environmental microbiology, 59(11), 3899-3905. [Google Scholar]
  22. De Lucia, B., & Vecchietti, L. (2012). Type of bio-stimulant and application method effects on stem quality and root system growth in LA Lily. European Journal of Horticultural Science, 77(1), 10. [Google Scholar]
  23. Elwaziri, E., Ismail, H., Abou El-Khair, E.-S., Al-Qahtani, S. M., Al-Harbi, N. A., Abd El-Gawad, H. G., ABDELAAL, K., & OSMAN, A. (2023). Biostimulant application of whey protein hydrolysates and potassium fertilization enhances the productivity and tuber quality of sweet potato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(2), 13122-13122. [Google Scholar]
  24. Engel, D. C. H., Feltrim, D., Rodrigues, M., Baptistella, J. L. C., & Mazzafera, P. (2024). Application of protein hydrolysate improved the productivity of soybean under greenhouse cultivation. Agriculture, 14(8), 1205. [Google Scholar]
  25. Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of plant nutrition soil science, 172(2), 237-244. [Google Scholar]
  26. Ertani, A., Francioso, O., Tugnoli, V., Righi, V., & Nardi, S. (2011). Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. Journal of agricultural and food chemistry, 59(22), 11940-11948. [Google Scholar]
  27. Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sanchez-Cortes, S., & Nardi, S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Frontiers in Plant Science, 5, 375. [Google Scholar]
  28. Ertani, A., Schiavon, M., Muscolo, A., & Nardi, S. (2013). Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant soil, 364(1), 145-158. [Google Scholar]
  29. Fan, X., Gordon-Weeks, R., Shen, Q., & Miller, A. J. (2006). Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. Journal of experimental botany, 57(6), 1333-1340. [Google Scholar]
  30. Farooq, M., Wahid, A., & Siddique, K. H. (2012). Micronutrient application through seed treatments: a review. Journal of soil science and plant nutrition, 12(1), 125-142. [Google Scholar]
  31. Farruggia, D., Licata, M., Di Miceli, G., Urso, G., Salamone, F., & Novak, J. (2025). Animal and plant-derived protein hydrolysates positively affect yield traits but produce contrasting response on chemicals of organic rosemary (Salvia rosmarinus Spenn.) grown under rainfed conditions. Italian Journal of Agronomy, 100048. [Google Scholar]
  32. Furuya, S., & Umemiya, Y. (2002). The influence of chemical. Forms on foliar-applied nitrogen absorption for peach trees. Acta Horticulturae, 97-103. [Google Scholar]
  33. Gaidau, C., Niculescu, M., Stepan, E., Epure, D.-G., & Gidea, M. (2013). New mixes based on collagen extracts with bioactive properties, for treatment of seeds in sustainable agriculture. Current Pharmaceutical Biotechnology, 14(9), 792-801. [Google Scholar]
  34. Gaidau, C., Stanca, M., Niculescu, M.-D., Alexe, C.-A., Becheritu, M., Horoias, R., Cioineag, C., Râpă, M., & Stanculescu, I. R. (2021). Wool keratin hydrolysates for bioactive additives preparation. Materials, 14(16), 4696. [Google Scholar]
  35. Gendaszewska, D., Wieczorek, D., Pipiak, P., Miśkiewicz, K., Zacharska, K., & Ławińska, K. (2025). Foliar Application of Protein Hydrolysate-Based Biostimulant and Herbal Extracts with Antifungal Properties in Winter Wheat Cultivation as a Strategy to Enhance Cereal Yield. International Journal of Molecular Sciences, 26(11), 5089. [Google Scholar]
  36. Gezgin, T., Karakus, S., & Bulbul, H. (2020). Et ürünlerinde hidroksiprolin miktarının belirlenmesinde mikrodalga ile protein hidrolizi yönteminin araştırılması. Gıda ve Yem Bilimi Teknolojisi Dergisi(23), 25-29. [Google Scholar]
  37. Gorim, L., & Asch, F. (2012). Effects of composition and share of seed coatings on the mobilization efficiency of cereal seeds during germination. Journal of agronomy and crop science, 198(2), 81-91. [Google Scholar]
  38. Gruda, N. (2009). Do soilless culture systems have an influence on product quality of vegetables? [Google Scholar]
  39. Gurav, R. G., & Jadhav, J. P. (2013). A novel source of biofertilizer from feather biomass for banana cultivation. Environmental science and pollution research, 20, 4532-4539. [Google Scholar]
  40. Halmer, P. (2004). Methods to improve seed performance in the field. Handbook of seed physiology, 125-165. [Google Scholar]
  41. Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. Advances in agronomy, 130, 141-174. [Google Scholar]
  42. Hill, H. (1999). Recent developments in seed technology. Journal of New seeds, 1(1), 105-112. [Google Scholar]
  43. Hoff, T., Truong, H. N., & Caboche, M. (1994). The use of mutants and transgenic plants to study nitrate assimilation. Plant, Cell & Environment, 17(5), 489-506. [Google Scholar]
  44. Hou, Y., Wu, Z., Dai, Z., Wang, G., & Wu, G. (2017). Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. J Anim Sci Biotechnol, 8, 24. https://doi.org/10.1186/s40104-017-0153-9 [Google Scholar] [Crossref] 
  45. Hua-Jing, W., Liang-Huan, W., Min-Yan, W., Yuan-Hong, Z., Qin-Nan, T., & Zhang, F.-S. (2007). Effects of amino acids replacing nitrate on growth, nitrate accumulation, and macroelement concentrations in pak-choi (Brassica chinensis L.). Pedosphere, 17(5), 595-600. [Google Scholar]
  46. Huang, W., Zhao, Z., Yuan, T., Yu, Y., Huang, W., Lei, Z., & Zhang, Z. (2018). Enhanced dry anaerobic digestion of swine excreta after organic nitrogen being recovered as soluble proteins and amino acids using hydrothermal technology. Biomass and Bioenergy, 108, 120-125. https://doi.org/10.1016/j.biombioe.2017.11.004 [Google Scholar] [Crossref] 
  47. Je, J.-Y., Park, P.-J., & Kim, S.-K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38(1), 45-50. [Google Scholar]
  48. Kauffman, G. L., Kneivel, D. P., & Watschke, T. L. (2007). Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Science, 47(1), 261-267. [Google Scholar]
  49. Keskin, N., Noyan, T., & Kunter, B. (2009). Resveratrol ile üzümden gelen sağlık. Turkiye Klinikleri Journal of Medical Sciences, 29(5), 1273-1279. [Google Scholar]
  50. Khan, S., Iqbal, M. Z., Solangi, F., Azeem, S., Bodlah, M. A., Zaheer, M. S., Niaz, Y., Ashraf, M., Abid, M., & Gul, H. (2025). Impact of amino acid supplementation on hydroponic lettuce (Lactuca sativa L.) growth and nutrient content. Scientific Reports, 15(1), 15829. [Google Scholar]
  51. Khanam, U. K. S., Oba, S., Yanase, E., & Murakami, Y. (2012). Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. Journal of Functional Foods, 4(4), 979-987. [Google Scholar]
  52. Lachhab, N., Sanzani, S. M., Adrian, M., Chiltz, A., Balacey, S., Boselli, M., Ippolito, A., & Poinssot, B. (2014). Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola. Frontiers in plant science, 5, 716. [Google Scholar]
  53. Leporino, M., Rouphael, Y., Bonini, P., Colla, G., & Cardarelli, M. (2024). Protein hydrolysates enhance recovery from drought stress in tomato plants: phenomic and metabolomic insights. Frontiers in plant science, 15, 1357316. [Google Scholar]
  54. Li, S., Ahmed, W., Jiang, T., Yang, D., Yang, L., Hu, X., Zhao, M., Peng, X., Yang, Y., & Zhang, W. (2025). Amino acid metabolism pathways as key regulators of nitrogen distribution in tobacco: insights from transcriptome and WGCNA analyses. BMC Plant Biology, 25(1), 393. [Google Scholar]
  55. Liu, X.-Q., & Lee, K.-S. (2012). Effect of mixed amino acids on crop growth. Agricultural science, 1, 119-158. [Google Scholar]
  56. Liu, X. Q., Ko, K. Y., Kim, S. H., & Lee, K. S. (2007). Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Communications in Soil Science and Plant Analysis, 39(1-2), 269-281. [Google Scholar]
  57. Lucchi, A., Cavani, L., & Qurartieri, M. (2001). Effects of the Rate of Protein Hydrolysis and Spray Concentration on Growth of Potted Kiwifruit (Actinidia deliciosa) Plants. International Symposium on Foliar Nutrition of Perennial Fruit Plants 594, [Google Scholar]
  58. Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia horticulturae, 182, 124-133. [Google Scholar]
  59. Maini, P. (2006). The experience of the first biostimulant, based on amino acids and peptides: a short retrospective review on the laboratory researches and the practical results. Fertilitas Agrorum, 1(1), 29-43. [Google Scholar]
  60. Malécange, M., Sergheraert, R., Teulat, B., Mounier, E., Lothier, J., & Sakr, S. (2023). Biostimulant properties of protein hydrolysates: Recent advances and future challenges. International Journal of Molecular Sciences, 24(11), 9714. [Google Scholar]
  61. Mancuso, F., Vultaggio, L., Sabatino, L., Bellitto, P., Ntatsi, G., Allevato, E., La Placa, G. G., La Bella, S., & Consentino, B. B. (2025). Zea mays-Derived Protein Hydrolysate and Diverse Application Modes Differentially Compose Crop Production and Fruit Quality of Strawberry Cultivated Under Tunnel. Agronomy, 15(6), 1314. [Google Scholar]
  62. Matsumiya, Y., & Kubo, M. (2011). Soybean peptide: novel plant growth promoting peptide from soybean. Soybean Nutrition, 215-230. [Google Scholar]
  63. Meisel, H., & Bockelmann, W. (1999). Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek, 76, 207-215. [Google Scholar]
  64. Miller, A. J., Fan, X., Shen, Q., & Smith, S. J. (2008). Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany, 59(1), 111-119. [Google Scholar]
  65. Moe, L. A. (2013). Amino acids in the rhizosphere: from plants to microbes. American journal of botany, 100(9), 1692-1705. [Google Scholar]
  66. Możejko, M., & Bohacz, J. (2023). Effect of keratin hydrolysates obtained from feather decomposition by Trichophyton ajelloi on plant germination, growth and biological activity of selected arable soils under model conditions. Agronomy, 13(1), 187. [Google Scholar]
  67. Muecke, J. (1988). Regulation of water transport in pelleted sugarbeet seed. [Google Scholar]
  68. Nardi, S., Carletti, P., Pizzeghello, D., & Muscolo, A. (2009). Biological activities of humic substances. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems, 2(part 1), 305-339. [Google Scholar]
  69. Oude Griep, L. M., Verschuren, W. M., Kromhout, D., Ocké, M. C., & Geleijnse, J. M. (2011). Colors of fruit and vegetables and 10-year incidence of stroke. Stroke, 42(11), 3190-3195. [Google Scholar]
  70. Özdestan, Ö., & Üren, A. (2010). Gıdalarda nitrat ve nitrit. Akademik Gıda, 8(6), 35-43. [Google Scholar]
  71. Parrado, J., Bautista, J., Romero, E., García-Martínez, A., Friaza, V., & Tejada, M. (2008). Production of a carob enzymatic extract: potential use as a biofertilizer. Bioresource technology, 99(7), 2312-2318. [Google Scholar]
  72. Parrado, J., Escudero‐Gilete, M. L., Friaza, V., García‐Martínez, A., González‐Miret, M. L., Bautista, J. D., & Heredia, F. J. (2007). Enzymatic vegetable extract with bio‐active components: Influence of fertiliser on the colour and anthocyanins of red grapes. Journal of the Science of Food and Agriculture, 87(12), 2310-2318. [Google Scholar]
  73. Pasković, I., Popović, L., Pongrac, P., Polić Pasković, M., Kos, T., Jovanov, P., & Franić, M. (2024). Protein hydrolysates—Production, effects on plant metabolism, and use in agriculture. Horticulturae, 10(10), 1041. [Google Scholar]
  74. Pasupuleti, V. K., Holmes, C., & Demain, A. L. (2008). Applications of Protein Hydrolysates in Biotechnology. In Protein Hydrolysates in Biotechnology (pp. 1-9). https://doi.org/10.1007/978-1-4020-6674-0_1 [Google Scholar] [Crossref] 
  75. Peli, M., Ambrosini, S., Sorio, D., Pasquarelli, F., Zamboni, A., & Varanini, Z. (2025). The soil application of a plant‐derived protein hydrolysate speeds up selectively the ripening‐specific processes in table grape. Physiologia Plantarum, 177(1), e70033. [Google Scholar]
  76. Planques, B., Colla, G., Svecová, E., Cardarelli, M., Rouphael, Y., Reynaud, H., & Canaguier, R. (2012). Effectiveness of a plant-derived protein hydrolysate to improve crop performances under different growing conditions. I World Congress on the Use of Biostimulants in Agriculture 1009, [Google Scholar]
  77. Przybylski, R., Firdaous, L., Châtaigné, G., Dhulster, P., & Nedjar, N. (2016). Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chemistry, 211, 306-313. [Google Scholar]
  78. Rentsch, D., Schmidt, S., & Tegeder, M. (2007). Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS letters, 581(12), 2281-2289. [Google Scholar]
  79. Rouphael, Y., Cardarelli, M., Bassal, A., Leonardi, C., Giuffrida, F., & Colla, G. (2012). Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food Agric. Environ, 10(3), 680-688. [Google Scholar]
  80. Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127(2), 172-179. [Google Scholar]
  81. Ruiz, J. M., Castilla, N., & Romero, L. (2000). Nitrogen metabolism in pepper plants applied with different bioregulators. Journal of agricultural and food chemistry, 48(7), 2925-2929. [Google Scholar]
  82. Rushing, J. B., Baldwin, B. S., Taylor, A. G., Owens, V. N., Fike, J. H., & Moore, K. J. (2013). Seed safening from herbicidal injury in switchgrass establishment. Crop Science, 53(4), 1650-1657. [Google Scholar]
  83. Ryan, C. A., & Pearce, G. J. P. P. (2001). Polypeptide hormones. 125(1), 65-68. [Google Scholar]
  84. Schiavon, M., Ertani, A., & Nardi, S. (2008). Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. Journal of agricultural and food chemistry, 56(24), 11800-11808. [Google Scholar]
  85. Shahidi, F., & Zhong, Y. (2008). Bioactive peptides. Journal of AOAC international, 91(4), 914-931. [Google Scholar]
  86. Sharma, S., SIngh, R., & Rana, S. (2011). Bioactive peptides: a review. Int J Bioautomation, 15(4), 223-250. [Google Scholar]
  87. Shetty, K., & McCue, P. (2003). Phenolic antioxidant biosynthesis in plants for functional food application: integration of systems biology and biotechnological approaches. Food Biotechnology, 17(2), 67-97. [Google Scholar]
  88. Sitohy, M. Z., Desoky, E.-S. M., Osman, A., & Rady, M. M. (2020). Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. Scientia Horticulturae, 271, 109495. [Google Scholar]
  89. Sivarathri, B. S., Kodadinne Narayana, N., Bryant, C. J., Dhillon, J., Reddy, K. R., & Bheemanahalli, R. (2025). Influence of seed-applied biostimulants on soybean germination and early seedling growth under low and high temperature stress. Plant Physiology Reports, 30(1), 32-44. [Google Scholar]
  90. Slavin, J. L., & Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in nutrition, 3(4), 506-516. [Google Scholar]
  91. Sorrentino, M., De Diego, N., Ugena, L., Spíchal, L., Lucini, L., Miras-Moreno, B., Zhang, L., Rouphael, Y., Colla, G., & Panzarová, K. (2021). Seed priming with protein hydrolysates improves Arabidopsis growth and stress tolerance to abiotic stresses. Frontiers in plant science, 12, 626301. [Google Scholar]
  92. Stiegler, J. C., Richardson, M. D., Karcher, D. E., Roberts, T. L., & Norman, R. J. (2013). Foliar absorption of various inorganic and organic nitrogen sources by creeping bentgrass. Crop Science, 53(3), 1148-1152. [Google Scholar]
  93. Svennerstam, H., & Jämtgård, S. (2022). Timing is everything–obtaining accurate measures of plant uptake of amino acids. New Phytologist, 234(1), 311-318. [Google Scholar]
  94. Tallarita, A. V., Simister, R., Vecchietti, L., Cozzolino, E., Stoleru, V., Murariu, O. C., Maiello, R., Cozzolino, G., De Pascale, S., & Caruso, G. (2025). Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions. Applied Sciences, 15(15), 8620. [Google Scholar]
  95. Tegeder, M. (2012). Transporters for amino acids in plant cells: some functions and many unknowns. Current opinion in plant biology, 15(3), 315-321. [Google Scholar]
  96. Tiring, G., Satar, S., & Özkaya, O. (2021). Sekonder metabolitler. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(1), 203-215. [Google Scholar]
  97. Trevisan, F., Waschgler, F., Tiziani, R., Cesco, S., & Mimmo, T. (2024). Exploring glycine root uptake dynamics in phosphorus and iron deficient tomato plants during the initial stages of plant development. BMC Plant Biology, 24(1), 495. [Google Scholar]
  98. Trouvelot, S., Héloir, M.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., Combier, M., Trdá, L., Daire, X., & Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in plant science, 5, 592. [Google Scholar]
  99. Wang, W., Zhang, C., Zheng, W., Lv, H., Li, J., Liang, B., & Zhou, W. (2022). Seed priming with protein hydrolysate promotes seed germination via reserve mobilization, osmolyte accumulation and antioxidant systems under PEG-induced drought stress. Plant Cell Reports, 41(11), 2173-2186. [Google Scholar]
  100. Warman, P. R., & Havard, K. (1998). Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agriculture, ecosystems & environment, 68(3), 207-216. [Google Scholar]
  101. Yao, Y., & Liu, X. (2025). Responses of nitrogen metabolism pathways to low-phosphorus stress: Decrease in nitrogen accumulation and alterations in protein metabolism in soybeans. Agronomy, 15(4), 836. [Google Scholar]
  102. Zhang, L., Freschi, G., Rouphael, Y., De Pascale, S., & Lucini, L. (2023). The differential modulation of secondary metabolism induced by a protein hydrolysate and a seaweed extract in tomato plants under salinity. Frontiers in plant science, 13, 1072782. [Google Scholar]
  103. Zhen-yu, G., Jia-wei, Y., Jun, Y., & Zhen-an, H. (2025). Protein hydrolysates priming enhances the photosynthesis and physiological activities of cotton seedlings under salt stress. Journal of Plant Nutrition and Fertilizers, 31(4), 745-758. [Google Scholar]
  104. Zuluaga, M. Y. A., Monterisi, S., Rouphael, Y., Colla, G., Lucini, L., Cesco, S., & Pii, Y. (2023). Different vegetal protein hydrolysates distinctively alleviate salinity stress in vegetable crops: A case study on tomato and lettuce. Frontiers in plant science, 14, 1077140. [Google Scholar]