- Ali, A., Chong, C. H., Mah, S. H., Abdullah, L. C., Choong, T. S. Y., & Chua, B. L. (2018). Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried Piper betle extracts. Molecules (Basel, Switzerland), 23(2), 484. [Google Scholar]
- Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT - Food Science and Technology, 37(7), 687-695. https://doi.org/10.1016/j.lwt.2004.03.002 [Google Scholar] [Crossref]
- Bozkurt, D. (2014). Soğuk plazma uygulamasının vitaminler ve polifenol oksidaz (pfo) enzimi aktivitesi üzerine etkisi. [Google Scholar]
- Brisset, J.-L., & Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chemistry and Plasma Processing, 36, 355-381. [Google Scholar]
- Chen, C., Liu, C., Jiang, A., Guan, Q., Sun, X., Liu, S., Hao, K., & Hu, W. (2019). The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food and Bioprocess Technology, 12, 1842-1851. [Google Scholar]
- Chiappim, W., Sampaio, A. d. G., Miranda, F., Fraga, M., Petraconi, G., da Silva Sobrinho, A., Kostov, K., Koga-Ito, C., & Pessoa, R. (2021). Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans. Water, 13(11), 1480. https://doi.org/10.3390/w13111480 [Google Scholar] [Crossref]
- Crema, A. P. S., Borges, L. D. P., Micke, G. A., & Debacher, N. A. (2020). Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification. Chemosphere, 244, 125502. [Google Scholar]
- Dallagi, W., Rguez, S., Hammami, M., Bettaieb Rebey, I., Bourgou, S., & Hamrouni Sellami, I. (2023). Optimization of processing conditions to enhance antioxidant and carotenoid contents of carrot juice. Journal of Food Measurement and Characterization, 17(5), 4384-4393. [Google Scholar]
- Delbeke, S., Ceuppens, S., Hessel, C. T., Castro, I., Jacxsens, L., De Zutter, L., & Uyttendaele, M. (2015). Microbial safety and sanitary quality of strawberry primary production in Belgium: Risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination. Applied and environmental microbiology, 81(7), 2562-2570. [Google Scholar]
- Dolezalova, E., & Lukes, P. (2015). Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry, 103, 7-14. [Google Scholar]
- Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363. [Google Scholar]
- Dziedzinska, R., Vasickova, P., Hrdy, J., Slany, M., Babak, V., & Moravkova, M. (2018). Foodborne Bacterial, Viral, and Protozoan Pathogens in Field and Market Strawberries and Environment of Strawberry Farms. Journal of Food Science, 83(12), 3069-3075. https://doi.org/10.1111/1750-3841.14401 [Google Scholar] [Crossref]
- Fuleki, T., & Francis, F. J. (1968). Quantitative Methods for Anthocyanins. Journal of Food Science, 33(1), 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x [Google Scholar] [Crossref]
- Ghimire, B., Pendyala, B., Patras, A., & Baysal-Gurel, F. (2024). Effect of Plasma-Activated Water (PAW) Generated Using Non-Thermal Atmospheric Plasma on Phytopathogenic Bacteria. Plant Disease, 108(12), 3446-3452. https://doi.org/10.1094/pdis-05-24-0957-sc [Google Scholar] [Crossref]
- Giovanelli, G., Zanoni, B., Lavelli, V., & Nani, R. (2002). Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 52(2), 135-141. https://doi.org/10.1016/s0260-8774(01)00095-4 [Google Scholar] [Crossref]
- Guo, J., Wang, J., Xie, H., Jiang, J., Li, C., Li, W., Li, L., Liu, X., & Lin, F. (2022). Inactivation effects of plasma-activated water on Fusarium graminearum. Food Control, 134, 108683. https://doi.org/10.1016/j.foodcont.2021.108683 [Google Scholar] [Crossref]
- Han, J.-Y., Song, W.-J., Eom, S., Kim, S. B., & Kang, D.-H. (2020). Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. Journal of Physics D: Applied Physics, 53(20), 204003. https://doi.org/10.1088/1361-6463/ab761f [Google Scholar] [Crossref]
- Lafarga, T., Colás-Medà, P., Abadías, M., Aguiló-Aguayo, I., Bobo, G., & Viñas, I. (2019). Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. Innovative Food Science & Emerging Technologies, 52, 197-212. https://doi.org/10.1016/j.ifset.2018.12.012 [Google Scholar] [Crossref]
- Laurita, R., Gozzi, G., Tappi, S., Capelli, F., Bisag, A., Laghi, G., Gherardi, M., Cellini, B., Abouelenein, D., Vittori, S., Colombo, V., Rocculi, P., Dalla Rosa, M., & Vannini, L. (2021). Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value. Innovative Food Science & Emerging Technologies, 73, 102805. https://doi.org/10.1016/j.ifset.2021.102805 [Google Scholar] [Crossref]
- Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. https://doi.org/10.1016/s0925-5214(00)00133-2 [Google Scholar] [Crossref]
- Liu, X., Yang, Y., Peng, Y., Li, M., Ni, Y., & Wen, X. (2024). Effects of radio frequency thawing on the quality attributes of frozen strawberries. International Journal of Food Science and Technology, 59(9), 6374-6387. [Google Scholar]
- Lukes, P., Brisset, J. L., & Locke, B. R. (2012). Biological effects of electrical discharge plasma in water and in gas–liquid environments. Plasma chemistry and catalysis in gases and liquids, 309-352. [Google Scholar]
- Lukes, P., Dolezalova, E., Sisrova, I., & Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sources Science and Technology, 23(1), 015019. https://doi.org/10.1088/0963-0252/23/1/015019 [Google Scholar] [Crossref]
- Machado‐Moreira, B., Richards, K., Brennan, F., Abram, F., & Burgess, C. M. (2019). Microbial Contamination of Fresh Produce: What, Where, and How? Comprehensive Reviews in Food Science and Food Safety, 18(6), 1727-1750. https://doi.org/10.1111/1541-4337.12487 [Google Scholar] [Crossref]
- Mogo, J. P. K., Fovo, J. D., Sop-Tamo, B., Mafouasson, H. N. A., Ngwem, M. C. N., Tebu, M. J., Youbi, G. K., & Laminsi, S. (2022). Effect of gliding arc plasma activated water (GAPAW) on maize (Zea mays L.) seed germination and growth. Seeds, 1(4), 230-243. [Google Scholar]
- Ortiz-Solà, J., Valero, A., Abadias, M., Nicolau-Lapeña, I., & Viñas, I. (2022). Evaluation of water-assisted UV-C light and its additive effect with peracetic acid for the inactivation of Listeria monocytogenes, Salmonella enterica and murine norovirus on whole and fresh-cut strawberries during shelf-life. Journal of the science of food and agriculture, 102(13), 5660-5669. https://doi.org/10.1002/jsfa.11913 [Google Scholar] [Crossref]
- Ozbudak, E., Carrillo-Tarazona, Y., Diaz, E. A., Zambon, F. T., Rossi, L., Peres, N. A., Raffaele, S., & Cano, L. M. (2025). Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. Frontiers in plant science, 15, 1390926-1390926. https://doi.org/10.3389/fpls.2024.1390926 [Google Scholar] [Crossref]
- Petrasch, S., Knapp, S. J., van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular plant pathology, 20(6), 877-892. https://doi.org/10.1111/mpp.12794 [Google Scholar] [Crossref]
- Polak, N., Kalisz, S., Hać-Szymańczuk, E., & Kruszewski, B. (2024). Impact of Conventional Pasteurization, High Temperature Short Time, Ultra-High Temperature, and Storage Time on Physicochemical Characteristics, Bioactive Compounds, Antioxidant Activity, and Microbiological Quality of Fruit Nectars. Foods (Basel, Switzerland), 13(23), 3963. https://doi.org/10.3390/foods13233963 [Google Scholar] [Crossref]
- Rana, V. S., Lingwal, K., Sharma, S., Rana, N., Pawar, R., Kumar, V., & Sharma, U. (2023). Enhancement in growth, yield and nutritive characteristics of strawberry (Fragaria× ananassa Duch.) by the application of biostimulant: seaweed extract. Acta Physiologiae Plantarum, 45(10), 122. [Google Scholar]
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3 [Google Scholar] [Crossref]
- Rivero, W., Wang, Q., & Salvi, D. (2022). Impact of plasma-activated water washing on the microbial inactivation, color, and electrolyte leakage of alfalfa sprouts, broccoli sprouts, and clover sprouts. Innovative Food Science & Emerging Technologies, 81, 103123. [Google Scholar]
- Royintarat, T., Choi, E. H., Boonyawan, D., Seesuriyachan, P., & Wattanutchariya, W. (2020). Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Scientific reports, 10(1), 1559-1559. https://doi.org/10.1038/s41598-020-58199-w [Google Scholar] [Crossref]
- Sadowska, A., Świderski, F., & Hallmann, E. (2020). Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Applied Sciences, 10(14), 4706. [Google Scholar]
- Sojithamporn, P., Leksakul, K., Sawangrat, C., Charoenchai, N., & Boonyawan, D. (2023). Degradation of pesticide residues in water, soil, and food products via cold plasma technology. Foods (Basel, Switzerland), 12(24), 4386. [Google Scholar]
- Stoleru, V., Burlica, R., Mihalache, G., Dirlau, D., Padureanu, S., Teliban, G.-C., Astanei, D., Cojocaru, A., Beniuga, O., & Patras, A. (2020). Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Scientific reports, 10(1), 20920. [Google Scholar]
- Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., & Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct‐current, cold atmospheric‐pressure air plasma microjet. Plasma Processes and Polymers, 9(2), 157-164. [Google Scholar]
- Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V. P. (2018). Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology, 77, 21-31. https://doi.org/10.1016/j.tifs.2018.05.007 [Google Scholar] [Crossref]
- Tian, Y., Ma, R., Zhang, Q., Feng, H., Liang, Y., Zhang, J., & Fang, J. (2015). Assessment of the physicochemical properties and biological effects of water activated by non‐thermal plasma above and beneath the water surface. Plasma Processes and Polymers, 12(5), 439-449. [Google Scholar]
- Timberlake, C. F., & Bridle, P. (1982). Distribution of Anthocyanins in Food Plants. In Anthocyanins As Food Colors (pp. 125-162): Elsevier. [Google Scholar]
- Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 472001. https://doi.org/10.1088/0022-3727/44/47/472001 [Google Scholar] [Crossref]
- Wang, H., Cao, G., & Prior, R. L. (1996). Total Antioxidant Capacity of Fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705. https://doi.org/10.1021/jf950579y [Google Scholar] [Crossref]
- Wang, Z., Qi, Y., Guo, L., Huang, L., Yao, Z., Yang, L., Li, G., Chen, J., Yan, J., Niyazi, G., Liu, L., Zhang, F., & Liu, D. (2021). The bactericidal effects of plasma-activated saline prepared by the combination of surface discharge plasma and plasma jet. Journal of Physics D: Applied Physics, 54(38), 385202. https://doi.org/10.1088/1361-6463/ac0d72 [Google Scholar] [Crossref]
- Wei, W., Wang, X., Xie, Z., Wang, W., Xu, J., Liu, Y., Gao, H., & Zhou, Y. (2017). Evaluation of Sanitizing Methods for Reducing Microbial Contamination on Fresh Strawberry, Cherry Tomato, and Red Bayberry. Frontiers in microbiology, 8, 2397-2397. https://doi.org/10.3389/fmicb.2017.02397 [Google Scholar] [Crossref]
- Xiao, H., Zhang, S., Xi, F., Yang, W., Zhou, L., Zhang, G., Zhu, H., & Zhang, Q. (2023). Preservation effect of plasma-activated water (PAW) treatment on fresh walnut kernels. Innovative Food Science & Emerging Technologies, 85, 103304. [Google Scholar]
- Xiong, L., Feng, L., Nie, M., Li, D., Zhang, Z., Liu, C., Dai, Z., Xiao, Y., & Xu, Y. (2024). Effect of Plasma-Activated Water (PAW) on the Postharvest Quality of Shepherd’s Purse (Capsella bursa-pastoris). Foods (Basel, Switzerland), 13(5), 703. [Google Scholar]
- Xu, D., Wang, S., Li, B., Qi, M., Feng, R., Li, Q., Zhang, H., Chen, H., & Kong, M. G. (2020). Effects of plasma-activated water on skin wound healing in mice. Microorganisms, 8(7), 1091. [Google Scholar]
- Xu, Y., Tian, Y., Ma, R., Liu, Q., & Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry, 197, 436-444. [Google Scholar]
- Xu, Z., Zhou, X., Yang, W., Zhang, Y., Ye, Z., Hu, S., Ye, C., Li, Y., Lan, Y., & Shen, J. (2020). In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. Plasma Processes and Polymers, 17(8), 1900270. [Google Scholar]
- Yang, X., Zhang, C., Li, Q., & Cheng, J.-H. (2023). Physicochemical Properties of Plasma-Activated Water and Its Control Effects on the Quality of Strawberries. Molecules (Basel, Switzerland), 28(6), 2677. https://doi.org/10.3390/molecules28062677 [Google Scholar] [Crossref]
- Yin, H.-B., Chen, C.-H., Colorado-Suarez, S., & Patel, J. (2022). Biocontrol of Listeria monocytogenes and Salmonella enterica on Fresh Strawberries with Lactic Acid Bacteria During Refrigerated Storage. Foodborne Pathogens and Disease, 19(5), 324-331. https://doi.org/10.1089/fpd.2021.0091 [Google Scholar] [Crossref]
- Zhang, H., Rubab, M., Chen, M., Gao, J., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, S., & Wei, S. (2024). Study on the detection of active components in plasma-activated water and its storage stability. CyTA-Journal of Food, 22(1), 2386417. [Google Scholar]
- Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., Zhang, J., & Fang, J. (2016). Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environmental Science & Technology, 50(6), 3184-3192. [Google Scholar]
- Zhang, R., Ma, Y., Wu, D., Fan, L., Bai, Y., & Xiang, Q. (2020). Synergistic Inactivation Mechanism of Combined Plasma-Activated Water and Mild Heat against Saccharomyces cerevisiae. Journal of Food Protection, 83(8), 1307-1314. https://doi.org/10.4315/jfp-20-065 [Google Scholar] [Crossref]
- Zhou, Z., Li, H., Qi, Z., & Liu, D. (2024). Biological and chemical reactivities of plasma-activated water prepared at different temperatures. Plasma Chemistry and Plasma Processing, 44(1), 393-410. [Google Scholar]
|