International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Research article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2025, Vol. 9(2) 46-66

Effect of Plasma Activated Water on Microbiological Quality and Shelf-life of Strawberries

Efe Bakla, Ufuk Bağcı

pp. 46 - 66   |  DOI: https://doi.org/10.29329/ijiaar.2025.1321.1

Publish Date: June 30, 2025  |   Single/Total View: 0/0   |   Single/Total Download: 0/0


Abstract

This study investigated the potential of plasma-activated water (PAW) as a non-thermal decontamination method for strawberries. PAW was produced by exposing potable water to dry air atmospheric plasma under various conditions (1 kVa, 10-40 min). Three PAW samples with different pH values (2.5, 2.75, and 3.0) were characterized by monitoring their pH, electrical conductivity, oxidation-reduction potential (ORP), and the concentrations of hydrogen peroxide, nitrite, and nitrate during 3 weeks of storage. The antimicrobial efficacy of PAW was evaluated against Escherichia coli ATCC 25922 and Botrytis cinerea in suspension. PAW with pH 2.5 exhibited the strongest antimicrobial activity, reducing E. coli and B. cinerea populations by up to 7 log CFU mL-1 and 5 log CFU mL-1, respectively, after 30 minutes of contact in suspension. The storage study demonstrated that PAW-treated strawberries maintained significantly lower microbial counts throughout 7 days of storage at 4 °C. On strawberry surfaces, a 15-minute treatment with PAW (pH 2.5) reduced E. coli and B. cinerea populations by 3.13 and 1.99 log CFU g-1, respectively. The total aerobic psychrophilic bacteria count in PAW-treated strawberries increased by only 0.8 log CFU g-1 during storage, compared to 1.4 log CFU g-1 in control samples. Importantly, PAW treatment did not adversely affect physical and chemical quality attributes of strawberries, including pH, ascorbic acid content, total antioxidant activity, anthocyanin content, and color parameters. These findings demonstrate that PAW is an effective, environmentally friendly alternative to conventional chemical sanitizers for reducing microbial contamination on strawberries while preserving their quality during refrigerated storage.This study investigated the potential of plasma-activated water (PAW) as a non-thermal decontamination method for strawberries. PAW was produced by exposing potable water to dry air atmospheric plasma under various conditions (1 kVa, 10-40 min). Three PAW samples with different pH values (2.5, 2.75, and 3.0) were characterized by monitoring their pH, electrical conductivity, oxidation-reduction potential (ORP), and the concentrations of hydrogen peroxide, nitrite, and nitrate during 3 weeks of storage. The antimicrobial efficacy of PAW was evaluated against Escherichia coli ATCC 25922 and Botrytis cinerea in suspension. PAW with pH 2.5 exhibited the strongest antimicrobial activity, reducing E. coli and B. cinerea populations by up to 7 log CFU mL-1 and 5 log CFU mL-1, respectively, after 30 minutes of contact in suspension. The storage study demonstrated that PAW-treated strawberries maintained significantly lower microbial counts throughout 7 days of storage at 4 °C. On strawberry surfaces, a 15-minute treatment with PAW (pH 2.5) reduced E. coli and B. cinerea populations by 3.13 and 1.99 log CFU g-1, respectively. The total aerobic psychrophilic bacteria count in PAW-treated strawberries increased by only 0.8 log CFU g-1 during storage, compared to 1.4 log CFU g-1 in control samples. Importantly, PAW treatment did not adversely affect physical and chemical quality attributes of strawberries, including pH, ascorbic acid content, total antioxidant activity, anthocyanin content, and color parameters. These findings demonstrate that PAW is an effective, environmentally friendly alternative to conventional chemical sanitizers for reducing microbial contamination on strawberries while preserving their quality during refrigerated storage.

Keywords: Strawberry, Plasma Activated Water, Decontamination, Botrytis Cinerea, Escherichia Coli, Nutritional Quality


How to Cite this Article?

APA 7th edition
Bakla, E., & Bagci, U. (2025). Effect of Plasma Activated Water on Microbiological Quality and Shelf-life of Strawberries. International Journal of Innovative Approaches in Agricultural Research, 9(2), 46-66. https://doi.org/10.29329/ijiaar.2025.1321.1

Harvard
Bakla, E. and Bagci, U. (2025). Effect of Plasma Activated Water on Microbiological Quality and Shelf-life of Strawberries. International Journal of Innovative Approaches in Agricultural Research, 9(2), pp. 46-66.

Chicago 16th edition
Bakla, Efe and Ufuk Bagci (2025). "Effect of Plasma Activated Water on Microbiological Quality and Shelf-life of Strawberries". International Journal of Innovative Approaches in Agricultural Research 9 (2):46-66. https://doi.org/10.29329/ijiaar.2025.1321.1

References
  1. Ali, A., Chong, C. H., Mah, S. H., Abdullah, L. C., Choong, T. S. Y., & Chua, B. L. (2018). Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried Piper betle extracts. Molecules (Basel, Switzerland), 23(2), 484. [Google Scholar]
  2. Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT - Food Science and Technology, 37(7), 687-695. https://doi.org/10.1016/j.lwt.2004.03.002 [Google Scholar] [Crossref] 
  3. Bozkurt, D. (2014). Soğuk plazma uygulamasının vitaminler ve polifenol oksidaz (pfo) enzimi aktivitesi üzerine etkisi. [Google Scholar]
  4. Brisset, J.-L., & Pawlat, J. (2016). Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chemistry and Plasma Processing, 36, 355-381. [Google Scholar]
  5. Chen, C., Liu, C., Jiang, A., Guan, Q., Sun, X., Liu, S., Hao, K., & Hu, W. (2019). The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food and Bioprocess Technology, 12, 1842-1851. [Google Scholar]
  6. Chiappim, W., Sampaio, A. d. G., Miranda, F., Fraga, M., Petraconi, G., da Silva Sobrinho, A., Kostov, K., Koga-Ito, C., & Pessoa, R. (2021). Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans. Water, 13(11), 1480. https://doi.org/10.3390/w13111480 [Google Scholar] [Crossref] 
  7. Crema, A. P. S., Borges, L. D. P., Micke, G. A., & Debacher, N. A. (2020). Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: A comparative study and by-product identification. Chemosphere, 244, 125502. [Google Scholar]
  8. Dallagi, W., Rguez, S., Hammami, M., Bettaieb Rebey, I., Bourgou, S., & Hamrouni Sellami, I. (2023). Optimization of processing conditions to enhance antioxidant and carotenoid contents of carrot juice. Journal of Food Measurement and Characterization, 17(5), 4384-4393. [Google Scholar]
  9. Delbeke, S., Ceuppens, S., Hessel, C. T., Castro, I., Jacxsens, L., De Zutter, L., & Uyttendaele, M. (2015). Microbial safety and sanitary quality of strawberry primary production in Belgium: Risk factors for Salmonella and Shiga toxin-producing Escherichia coli contamination. Applied and environmental microbiology, 81(7), 2562-2570. [Google Scholar]
  10. Dolezalova, E., & Lukes, P. (2015). Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet. Bioelectrochemistry, 103, 7-14. [Google Scholar]
  11. Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354-363. [Google Scholar]
  12. Dziedzinska, R., Vasickova, P., Hrdy, J., Slany, M., Babak, V., & Moravkova, M. (2018). Foodborne Bacterial, Viral, and Protozoan Pathogens in Field and Market Strawberries and Environment of Strawberry Farms. Journal of Food Science, 83(12), 3069-3075. https://doi.org/10.1111/1750-3841.14401 [Google Scholar] [Crossref] 
  13. Fuleki, T., & Francis, F. J. (1968). Quantitative Methods for Anthocyanins. Journal of Food Science, 33(1), 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x [Google Scholar] [Crossref] 
  14. Ghimire, B., Pendyala, B., Patras, A., & Baysal-Gurel, F. (2024). Effect of Plasma-Activated Water (PAW) Generated Using Non-Thermal Atmospheric Plasma on Phytopathogenic Bacteria. Plant Disease, 108(12), 3446-3452. https://doi.org/10.1094/pdis-05-24-0957-sc [Google Scholar] [Crossref] 
  15. Giovanelli, G., Zanoni, B., Lavelli, V., & Nani, R. (2002). Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 52(2), 135-141. https://doi.org/10.1016/s0260-8774(01)00095-4 [Google Scholar] [Crossref] 
  16. Guo, J., Wang, J., Xie, H., Jiang, J., Li, C., Li, W., Li, L., Liu, X., & Lin, F. (2022). Inactivation effects of plasma-activated water on Fusarium graminearum. Food Control, 134, 108683. https://doi.org/10.1016/j.foodcont.2021.108683 [Google Scholar] [Crossref] 
  17. Han, J.-Y., Song, W.-J., Eom, S., Kim, S. B., & Kang, D.-H. (2020). Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. Journal of Physics D: Applied Physics, 53(20), 204003. https://doi.org/10.1088/1361-6463/ab761f [Google Scholar] [Crossref] 
  18. Lafarga, T., Colás-Medà, P., Abadías, M., Aguiló-Aguayo, I., Bobo, G., & Viñas, I. (2019). Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. Innovative Food Science & Emerging Technologies, 52, 197-212. https://doi.org/10.1016/j.ifset.2018.12.012 [Google Scholar] [Crossref] 
  19. Laurita, R., Gozzi, G., Tappi, S., Capelli, F., Bisag, A., Laghi, G., Gherardi, M., Cellini, B., Abouelenein, D., Vittori, S., Colombo, V., Rocculi, P., Dalla Rosa, M., & Vannini, L. (2021). Effect of plasma activated water (PAW) on rocket leaves decontamination and nutritional value. Innovative Food Science & Emerging Technologies, 73, 102805. https://doi.org/10.1016/j.ifset.2021.102805 [Google Scholar] [Crossref] 
  20. Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. https://doi.org/10.1016/s0925-5214(00)00133-2 [Google Scholar] [Crossref] 
  21. Liu, X., Yang, Y., Peng, Y., Li, M., Ni, Y., & Wen, X. (2024). Effects of radio frequency thawing on the quality attributes of frozen strawberries. International Journal of Food Science and Technology, 59(9), 6374-6387. [Google Scholar]
  22. Lukes, P., Brisset, J. L., & Locke, B. R. (2012). Biological effects of electrical discharge plasma in water and in gas–liquid environments. Plasma chemistry and catalysis in gases and liquids, 309-352. [Google Scholar]
  23. Lukes, P., Dolezalova, E., Sisrova, I., & Clupek, M. (2014). Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sources Science and Technology, 23(1), 015019. https://doi.org/10.1088/0963-0252/23/1/015019 [Google Scholar] [Crossref] 
  24. Machado‐Moreira, B., Richards, K., Brennan, F., Abram, F., & Burgess, C. M. (2019). Microbial Contamination of Fresh Produce: What, Where, and How? Comprehensive Reviews in Food Science and Food Safety, 18(6), 1727-1750. https://doi.org/10.1111/1541-4337.12487 [Google Scholar] [Crossref] 
  25. Mogo, J. P. K., Fovo, J. D., Sop-Tamo, B., Mafouasson, H. N. A., Ngwem, M. C. N., Tebu, M. J., Youbi, G. K., & Laminsi, S. (2022). Effect of gliding arc plasma activated water (GAPAW) on maize (Zea mays L.) seed germination and growth. Seeds, 1(4), 230-243. [Google Scholar]
  26. Ortiz-Solà, J., Valero, A., Abadias, M., Nicolau-Lapeña, I., & Viñas, I. (2022). Evaluation of water-assisted UV-C light and its additive effect with peracetic acid for the inactivation of Listeria monocytogenes, Salmonella enterica and murine norovirus on whole and fresh-cut strawberries during shelf-life. Journal of the science of food and agriculture, 102(13), 5660-5669. https://doi.org/10.1002/jsfa.11913 [Google Scholar] [Crossref] 
  27. Ozbudak, E., Carrillo-Tarazona, Y., Diaz, E. A., Zambon, F. T., Rossi, L., Peres, N. A., Raffaele, S., & Cano, L. M. (2025). Transcriptome analysis of Colletotrichum nymphaeae-Strawberry interaction reveals in planta expressed genes associated with virulence. Frontiers in plant science, 15, 1390926-1390926. https://doi.org/10.3389/fpls.2024.1390926 [Google Scholar] [Crossref] 
  28. Petrasch, S., Knapp, S. J., van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular plant pathology, 20(6), 877-892. https://doi.org/10.1111/mpp.12794 [Google Scholar] [Crossref] 
  29. Polak, N., Kalisz, S., Hać-Szymańczuk, E., & Kruszewski, B. (2024). Impact of Conventional Pasteurization, High Temperature Short Time, Ultra-High Temperature, and Storage Time on Physicochemical Characteristics, Bioactive Compounds, Antioxidant Activity, and Microbiological Quality of Fruit Nectars. Foods (Basel, Switzerland), 13(23), 3963. https://doi.org/10.3390/foods13233963 [Google Scholar] [Crossref] 
  30. Rana, V. S., Lingwal, K., Sharma, S., Rana, N., Pawar, R., Kumar, V., & Sharma, U. (2023). Enhancement in growth, yield and nutritive characteristics of strawberry (Fragaria× ananassa Duch.) by the application of biostimulant: seaweed extract. Acta Physiologiae Plantarum, 45(10), 122. [Google Scholar]
  31. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3 [Google Scholar] [Crossref] 
  32. Rivero, W., Wang, Q., & Salvi, D. (2022). Impact of plasma-activated water washing on the microbial inactivation, color, and electrolyte leakage of alfalfa sprouts, broccoli sprouts, and clover sprouts. Innovative Food Science & Emerging Technologies, 81, 103123. [Google Scholar]
  33. Royintarat, T., Choi, E. H., Boonyawan, D., Seesuriyachan, P., & Wattanutchariya, W. (2020). Chemical-free and synergistic interaction of ultrasound combined with plasma-activated water (PAW) to enhance microbial inactivation in chicken meat and skin. Scientific reports, 10(1), 1559-1559. https://doi.org/10.1038/s41598-020-58199-w [Google Scholar] [Crossref] 
  34. Sadowska, A., Świderski, F., & Hallmann, E. (2020). Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Applied Sciences, 10(14), 4706. [Google Scholar]
  35. Sojithamporn, P., Leksakul, K., Sawangrat, C., Charoenchai, N., & Boonyawan, D. (2023). Degradation of pesticide residues in water, soil, and food products via cold plasma technology. Foods (Basel, Switzerland), 12(24), 4386. [Google Scholar]
  36. Stoleru, V., Burlica, R., Mihalache, G., Dirlau, D., Padureanu, S., Teliban, G.-C., Astanei, D., Cojocaru, A., Beniuga, O., & Patras, A. (2020). Plant growth promotion effect of plasma activated water on Lactuca sativa L. cultivated in two different volumes of substrate. Scientific reports, 10(1), 20920. [Google Scholar]
  37. Sun, P., Wu, H., Bai, N., Zhou, H., Wang, R., Feng, H., Zhu, W., Zhang, J., & Fang, J. (2012). Inactivation of Bacillus subtilis spores in water by a direct‐current, cold atmospheric‐pressure air plasma microjet. Plasma Processes and Polymers, 9(2), 157-164. [Google Scholar]
  38. Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V. P. (2018). Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology, 77, 21-31. https://doi.org/10.1016/j.tifs.2018.05.007 [Google Scholar] [Crossref] 
  39. Tian, Y., Ma, R., Zhang, Q., Feng, H., Liang, Y., Zhang, J., & Fang, J. (2015). Assessment of the physicochemical properties and biological effects of water activated by non‐thermal plasma above and beneath the water surface. Plasma Processes and Polymers, 12(5), 439-449. [Google Scholar]
  40. Timberlake, C. F., & Bridle, P. (1982). Distribution of Anthocyanins in Food Plants. In Anthocyanins As Food Colors (pp. 125-162): Elsevier. [Google Scholar]
  41. Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Long-term antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 472001. https://doi.org/10.1088/0022-3727/44/47/472001 [Google Scholar] [Crossref] 
  42. Wang, H., Cao, G., & Prior, R. L. (1996). Total Antioxidant Capacity of Fruits. Journal of Agricultural and Food Chemistry, 44(3), 701-705. https://doi.org/10.1021/jf950579y [Google Scholar] [Crossref] 
  43. Wang, Z., Qi, Y., Guo, L., Huang, L., Yao, Z., Yang, L., Li, G., Chen, J., Yan, J., Niyazi, G., Liu, L., Zhang, F., & Liu, D. (2021). The bactericidal effects of plasma-activated saline prepared by the combination of surface discharge plasma and plasma jet. Journal of Physics D: Applied Physics, 54(38), 385202. https://doi.org/10.1088/1361-6463/ac0d72 [Google Scholar] [Crossref] 
  44. Wei, W., Wang, X., Xie, Z., Wang, W., Xu, J., Liu, Y., Gao, H., & Zhou, Y. (2017). Evaluation of Sanitizing Methods for Reducing Microbial Contamination on Fresh Strawberry, Cherry Tomato, and Red Bayberry. Frontiers in microbiology, 8, 2397-2397. https://doi.org/10.3389/fmicb.2017.02397 [Google Scholar] [Crossref] 
  45. Xiao, H., Zhang, S., Xi, F., Yang, W., Zhou, L., Zhang, G., Zhu, H., & Zhang, Q. (2023). Preservation effect of plasma-activated water (PAW) treatment on fresh walnut kernels. Innovative Food Science & Emerging Technologies, 85, 103304. [Google Scholar]
  46. Xiong, L., Feng, L., Nie, M., Li, D., Zhang, Z., Liu, C., Dai, Z., Xiao, Y., & Xu, Y. (2024). Effect of Plasma-Activated Water (PAW) on the Postharvest Quality of Shepherd’s Purse (Capsella bursa-pastoris). Foods (Basel, Switzerland), 13(5), 703. [Google Scholar]
  47. Xu, D., Wang, S., Li, B., Qi, M., Feng, R., Li, Q., Zhang, H., Chen, H., & Kong, M. G. (2020). Effects of plasma-activated water on skin wound healing in mice. Microorganisms, 8(7), 1091. [Google Scholar]
  48. Xu, Y., Tian, Y., Ma, R., Liu, Q., & Zhang, J. (2016). Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry, 197, 436-444. [Google Scholar]
  49. Xu, Z., Zhou, X., Yang, W., Zhang, Y., Ye, Z., Hu, S., Ye, C., Li, Y., Lan, Y., & Shen, J. (2020). In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. Plasma Processes and Polymers, 17(8), 1900270. [Google Scholar]
  50. Yang, X., Zhang, C., Li, Q., & Cheng, J.-H. (2023). Physicochemical Properties of Plasma-Activated Water and Its Control Effects on the Quality of Strawberries. Molecules (Basel, Switzerland), 28(6), 2677. https://doi.org/10.3390/molecules28062677 [Google Scholar] [Crossref] 
  51. Yin, H.-B., Chen, C.-H., Colorado-Suarez, S., & Patel, J. (2022). Biocontrol of Listeria monocytogenes and Salmonella enterica on Fresh Strawberries with Lactic Acid Bacteria During Refrigerated Storage. Foodborne Pathogens and Disease, 19(5), 324-331. https://doi.org/10.1089/fpd.2021.0091 [Google Scholar] [Crossref] 
  52. Zhang, H., Rubab, M., Chen, M., Gao, J., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, S., & Wei, S. (2024). Study on the detection of active components in plasma-activated water and its storage stability. CyTA-Journal of Food, 22(1), 2386417. [Google Scholar]
  53. Zhang, Q., Ma, R., Tian, Y., Su, B., Wang, K., Yu, S., Zhang, J., & Fang, J. (2016). Sterilization efficiency of a novel electrochemical disinfectant against Staphylococcus aureus. Environmental Science & Technology, 50(6), 3184-3192. [Google Scholar]
  54. Zhang, R., Ma, Y., Wu, D., Fan, L., Bai, Y., & Xiang, Q. (2020). Synergistic Inactivation Mechanism of Combined Plasma-Activated Water and Mild Heat against Saccharomyces cerevisiae. Journal of Food Protection, 83(8), 1307-1314. https://doi.org/10.4315/jfp-20-065 [Google Scholar] [Crossref] 
  55. Zhou, Z., Li, H., Qi, Z., & Liu, D. (2024). Biological and chemical reactivities of plasma-activated water prepared at different temperatures. Plasma Chemistry and Plasma Processing, 44(1), 393-410. [Google Scholar]