- Celen, I. H. (2012). Tarımsal Mücadelede Püskürtme Memeleri (Spray Nozzles in Plant Protection Applications) (1st ed.). Toprak Ofset. ISBN: 978-605-86370-0-9. [in Turkish]. [Google Scholar]
- Celen, I. H., Onler, E., & Ozyurt, H. B. (2020). Drone technology in precision agriculture. In Academic Studies in Engineering Sciences (pp. 121–150). Livre de Lyon. ISBN: 978-2-38236-050-7. [Google Scholar]
- Chen, P., Douzals, J. P., Lan, Y., Cotteux, E., Delpuech, X., Pouxviel, G., & Zhan, Y. (2022). Characteristics of unmanned aerial spraying systems and related spray drift: A review. Frontiers in Plant Science, 13, 870956. [Google Scholar]
- Dengeru, Y., Ramasamy, K., Allimuthu, S., Balakrishnan, S., Kumar, A. P. M., Kannan, B., & Karuppasami, K. M. (2022). Study on spray deposition and drift characteristics of UAV agricultural sprayer for application of insecticide in redgram crop (Cajanus cajan L. Millsp.). Agronomy, 12(12), 3196. [Google Scholar]
- Fox, R. D., Derksen, R. C., Cooper, J. A., Krause, C. R., & Ozkan, H. E. (2003). Visual and image system measurement of spray deposits using water-sensitive paper. Applied Engineering in Agriculture, 19, 549–552. [Google Scholar]
- Hanna, M., & Schaefer, K. (2008). Factors influencing pesticide drift. Ames, IA: Iowa State University Extension and Outreach. Retrieved from https://store.extension.iastate.edu/product/Factors-Affecting-Pesticide-Drift [Google Scholar]
- Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502–509. https://doi.org/10.1016/j.procs.2018.07.063 [Google Scholar] [Crossref]
- Onler, E., Özyurt, H. B., Şener, M., Arat, S., Eker, B., & Çelen, İ. H. (2023). Spray characterisation of an unmanned aerial vehicle for agricultural spraying. Philippine Agricultural Scientist, 106(1), 39–46. [Google Scholar]
- Pharne, I. D., Kanase, S., Patwegar, S., Patil, P., Pore, A., & Kadam, Y. (2018). Agriculture drone sprayer. International Journal of Recent Trends in Engineering & Research, 4(3), 181–185. [Google Scholar]
- Sarghini, F., & De Vivo, A. (2017). Interference analysis of a heavy-lift multirotor drone flow field and transport spraying system. Chemical Engineering Transactions, 58, 631–636. [Google Scholar]
- Spoorthi, S., Shadaksharappa, B., Suraj, S., & Manasa, V. K. (2017). Freyr drone: Pesticide/fertilizer spraying drone—an agricultural approach. In 2017 IEEE 2nd International Conference on Computing and Communications Technologies (ICCCT) (pp. 252–255). [Google Scholar]
- Stehr, N. J. (2015). Drones: The newest technology for precision agriculture. American Society of Agronomy, Natural Sciences, 44(1), 89–91. [Google Scholar]
- Tang, Q., Zhang, R. R., Chen, L. P., Xu, M., Yi, T. C., & Zhang, B. (2017). Droplet movement and deposition of an eight-rotor agricultural UAV in downwash flow field. International Journal of Agricultural and Biological Engineering, 10(3), 47–56. [Google Scholar]
- Urbahs, A., & Jonaite, I. (2013). Features of the use of unmanned aerial vehicles for agriculture applications. Aviation, 17(4), 170–175. [Google Scholar]
- Wang, G., Han, Y., Li, X., Andaloro, J., Chen, P., Hoffmann, W. C., Xiaoqiang, H., Shengde, C., & Lan, Y. (2020). Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Science of the Total Environment, 737, 139793. [Google Scholar]
- Yallappa, D., Veerangouda, M., Maski, D., Palled, V., & Bheemanna, M. (2017). Development and evaluation of drone mounted sprayer for pesticide applications to crops. In 2017 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1–7). [Google Scholar]
- Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2), 113–132. [Google Scholar]
- Zhu, H., & Sciarini, S. M. (2010). DepositScan manual: Portable scanning system for spray deposit qualification. USDA-ARS Application Technology Research Unit. [Google Scholar]
- Zhu, H., Salyani, M., & Fox, R. D. (2011). A portable scanning system for evaluation of spray deposit distribution. Computers and Electronics in Agriculture, 76, 38–43. [Google Scholar]
|