International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Review article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(4) 439-471

Effects of Different Rainfall Regimes on Soil Plant Ecosystems and Preventable Adaptation Processes

Nesrin Yıldız, Raisa Kalkay & Cebrail Türkmen

pp. 439 - 471   |  DOI: https://doi.org/10.29329/ijiaar.2024.1109.12

Publish Date: January 02, 2025  |   Single/Total View: 82/34   |   Single/Total Download: 138/37


Abstract

The purpose of this review paper is to provide an overview of the global impacts on soil properties, crop production and water resources of variations in precipitation regimes as a result of climate change and to briefly summarize possible sustainable measures/adaptation processes to minimize risk. Extreme temperatures and extreme precipitation are expected to increase in the coming years due to global warming. As a matter of fact, one of the negative impacts of climate change is the 'change in the intensity and distribution of precipitation'. In fact, precipitation that should fall in a few months can fall on the earth in a few hours, causing significant damages and damages. Probably no other factor causes the deterioration of soil fertility as much as rainfall, either in the short term or over the ages. The pain of rainfall is felt mainly in the soil and its effects are far-reaching. It significantly increases the need for fertilizer. Agricultural authorities and farmers, who think about economics in all matters, do not think about the fact that rainfall, which is instrumental in changing soil nutrient levels, is a major disruptor of the soil nutrient economy.

In water management, as in all agricultural activities, the evolution of technology has revolutionized modern farming, but it is questionable how useful it can be for managing water. 'It is essential that we do our best in water management, using all the tools we have.' Precision agriculture technology will certainly play an important role in this regard, but which tools will provide farmers with the most accurate and valuable information for water management will depend on soil and climatic conditions.

Keywords: Rainfall Regime, Soil Properties, Crop Response, Climate Change


How to Cite this Article?

APA 7th edition
Yildiz, N., Kalkay, R., & Turkmen, C. (2024). Effects of Different Rainfall Regimes on Soil Plant Ecosystems and Preventable Adaptation Processes. International Journal of Innovative Approaches in Agricultural Research, 8(4), 439-471. https://doi.org/10.29329/ijiaar.2024.1109.12

Harvard
Yildiz, N., Kalkay, R. and Turkmen, C. (2024). Effects of Different Rainfall Regimes on Soil Plant Ecosystems and Preventable Adaptation Processes. International Journal of Innovative Approaches in Agricultural Research, 8(4), pp. 439-471.

Chicago 16th edition
Yildiz, Nesrin, Raisa Kalkay and Cebrail Turkmen (2024). "Effects of Different Rainfall Regimes on Soil Plant Ecosystems and Preventable Adaptation Processes". International Journal of Innovative Approaches in Agricultural Research 8 (4):439-471. https://doi.org/10.29329/ijiaar.2024.1109.12

References
  1. Akcan, A. T., Kurt, Ü., & Kılıç, C. (2022). The effects of climate change on the agricultural sector in Turkey: ARDL bounds test approach. Trends in Business and Economics, 36(1), 125-132. https://doi.org/10.54614/TBE.2022.992490 [Google Scholar] [Crossref] 
  2. Amatekpor, J. K. (1989). The effect of seasonal flooding on the clay mineralogy of a soil series in the Lake Volta retreat area, Ghana. Land Degradation and Rehabilitation, 1, 89-100. [Google Scholar]
  3. Anonymous. (2021). Climate change and agriculture assessment report. Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Reform Department of Agricultural Environment and Natural Resources Protection. Retrieved from https://www.tarimorman.gov.tr/TRGM/Belgeler/ıklım%20degısıklıgı%20ve%20tarım%20degerlendırme%20raporu.pdf [Google Scholar]
  4. Anonymous. (2022). Climate change and agriculture. Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Reform. Department of Agricultural Environment and Natural Resources Protection. Retrieved from https://www.tarimorman.gov.tr/TRGM/Belgeler/%C4%B0klim%20De%C4%9Fi%C5%9Fikli%C4%9Fi%20ve%20Tar%C4%B1m.pdf [Google Scholar]
  5. Aydın, F., & Sarptaş, H. (2017). Impact of climate change on plant breeding: Turkey case with model plants. Pamukkale University Journal of Engineering Sciences, 24(3), 512-521. https://doi.org/10.5505/pajes.2017.37880 [Google Scholar] [Crossref] 
  6. Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (Eds.). (2008). Climate change and water: Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat. [Google Scholar]
  7. Brammer, H. and Brinkman, R. 1990. Changes in soil resources in response to a gradually rising sea-level.. In: Scharpenseel et al. (eds.). 1990. pp. 145-156 [Google Scholar]
  8. Brammer, H., & Brinkman, R. (1990). Changes in soil resources in response to a gradually rising sea-level. In H. Scharpenseel et al. (Eds.), Chapter 12 (pp. 145-156). [Google Scholar]
  9. Brevik, E. C. (2009). Soil health and productivity. In W. Verheye (Ed.), Encyclopedia of life support systems: Soils, plant growth, and crop production. Oxford University Press. Retrieved from http://www.eolss.net [Google Scholar]
  10. Brevik, E. C. (2012). Soils and climate change: Gas fluxes and soil processes. Soil Horizons, 53, 1-6. https://doi.org/10.2136/sh12-04-0012 [Google Scholar] [Crossref] 
  11. Brevik, E. C. (2013). Soils and human health: An overview. In E. C. Brevik & L. C. Burgess (Eds.), Soils and human health (pp. 29-56). CRC Press. [Google Scholar]
  12. Brinkman, R. (1982). Clay transformations: Equilibrium and kinetic aspects. In G. H. Bolt (Ed.), Soil chemistry. B. Physicochemical models: Advances in soil science (Vol. 5B, 2nd ed., pp. 433-458). Elsevier. [Google Scholar]
  13. Brinkman, R. (1987). Sediments and soils in the Karang Agung area: Some aspects of tidal marsh development with special reference to Karang Agung District, South Sumatra Province. In R. Best, R. Brinkman, & J. J. van Roon (Eds.), Mimeo. World Bank, Jakarta, 12-22. [Google Scholar]
  14. Brinkman, R., & Pons, L. J. (1968). Pedo-geomorphological classification and mapping of Holocene sediments in the coastal plain of the three Guyana coastal plains. Soil Survey Paper No. 4. Soil Survey Institute (Staring Centre), Wageningen. 40 p, separate map. [Google Scholar]
  15. Brinkman, R., & Sombroek, W. G. (1996). The effects of global change on soil conditions in relation to plant growth and food production. In F. Bazzaz & W. Sombroek (Eds.), Global change and agricultural production (pp. 49-63). Food and Agricultural Organization of the United Nations & John Wiley & Sons. https://www.fao.org/4/w5183e/w5183e05.htm [Google Scholar]
  16. Brinkman, R., & Sombroek, W. G. (1996). The effects of global change on soil conditions in relation to plant growth and food production. In F. Bazzaz & W. Sombroek (Eds.), Global Change and Agricultural Production (345 pp.). Food and Agricultural Organization of the United Nations & John Wiley & Sons. [Google Scholar]
  17. Buol, S. W., Sanchez, P. A., Kimble, J. M., & Weed, S. B. (1990). Predicted impact of climatic warming on soil properties and use. American Society of Agronomy Special Publication, 53, 71-82. [Google Scholar]
  18. Daba, M. H., Belay, A., & Tezera, Z. B. (2018). Effects of climate change on soil and water resources. Journal of Environment and Earth Science, 8(7). ISSN 2224-3216 (Paper), ISSN 2225-0948 (Online). [Google Scholar]
  19. Day, J. W., & Templet, P. H. (1989). The consequences of sea level rise: Implications for the Mississippi delta. Coastal Management, 17, 241-257. [Google Scholar]
  20. Dellal, İ., & McCarl, B. A. (2007). Climate change and agriculture: Prognoses for Turkey. In International Conference on Global Climate Change and its Environmental Impacts (UKİDEK), Konya Metropolitan Municipality, KOSKİ, Konya. [Google Scholar]
  21. Dellal, İ., & Butt, T. (2005). Climate change and agriculture. TEAE Publications, TEAE-Bakış, Ankara. [Google Scholar]
  22. Denhez, F. (2007). Global warming atlas. NTV Publications, Istanbul, Turkey. [Google Scholar]
  23. DSİ. (2021). 2021 Annual Report, Soil and Water Resources. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/Sayfa/759/1107/DosyaGaleri/2021_yili_faaliyet_raporu.pdf (Erişim tarihi: 19.09.2024) [Google Scholar]
  24. DSİ. (2022). Soil Water Resources. https://www.dsi.gov.tr/Sayfa/Detay/754 (Erişim tarihi: 19.09.2024) [Google Scholar]
  25. Dubroeucq, D., & Volkoff, B. (1988). Evolution des couvertures pédologiques sableuses à podzols géants d'Amazonie (Bassin du haut Rio Negro). Cahiers ORSTOM, Série Pédologie, 24(3), 191-214. [Google Scholar]
  26. Emanuel, W. R., Shugart, H. H., & Stevenson, M. P. (1985). Climate change and the large-scale distribution of terrestrial ecosystem complexes. Climate Change, 7, 29-43. [Google Scholar]
  27. Erlat, E. (2014). Climate system and climate changes (5th ed.). Ege University Publications. [Google Scholar]
  28. FAO & ITPS. (2015). Status of the World's Soil Resources (SWSR) Main Report. Food and Agriculture Organization. Journal of Environment and Earth Science, www.iiste.org [Google Scholar]
  29. FAO. (2014). World reference base for soil resources 2014. World Soil Resources Report 106. Rome. 120 pp. [Google Scholar]
  30. FAO & ITPS. (2015). Status of the World’s Soil Resources (SWSR) Main Report. Food and Agriculture Organization. Journal of Environment and Earth Science, www.iiste.org [Google Scholar]
  31. FAO. (2010). Climate Smart Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation. Rome. [Google Scholar]
  32. Gleick, P. H. (1993). Water in crisis: A guide to the world's fresh water resources. Oxford University Press. [Google Scholar]
  33. Gorissen, A., Tietema, A., Joosten, N. N., Estiarte, M., Peñuelas, J., Sowerby, A., Emmett, B. A., & Beier, C. (2004). Climate change affects carbon allocation to the soil in shrub lands. Ecosystems, 7, 650–661. https://link.springer.com/article/10.1007/s10021-004-0218-4 [Google Scholar]
  34. Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of Indian river basins. Current Science, 90(3), 346–353. [Google Scholar]
  35. Grıd, A. (2014). A Centre collaborating with UNEP. http://www.grida.no/publications/vg/climate/page/30 90.aspx (Erişim tarihi: 12.10.2014) https://www.grida.no/resources/8433 (Erişim tarihi: 19.10.2024) [Google Scholar]
  36. Günel, M. S. (2005). Determination of the distribution of precipitation over time in Turkey (Yüksek lisans tezi). Bilim ve Teknoloji Enstitüsü. [Google Scholar]
  37. Hanjra, M. A., & Qureshi, M. E. (2010). Global water crisis and future food security in an era of climate change. Food Policy, 35(5), 365–377. https://doi.org/10.1016/j.foodpol.2010.05.006 [Google Scholar] [Crossref] 
  38. Hansen, J., Sato, M., Kharecha, P., Russell, G., Lea, D. W., & Siddall, M. (2007). Climate change and trace gases. Philosophical Transactions of the Royal Society A, 365, 1925–1954. [Google Scholar]
  39. Haşlak, O. (2007). Effects of global warming on soil and plants. In 2nd Environmental Problems Congress of University Students (pp. 1-10), Istanbul, Turkey, May 16-18. [Google Scholar]
  40. Hättenschwiler, S., Handa, I. T., Egli, L., Asshoff, R., Ammann, W., & Körner, C. (2002). Atmospheric CO2 enrichment of alpine tree line conifers. New Phytologist, 156, 363–375. https://doi.org/10.1046/j.1469-8137.2002.00537.x [Google Scholar] [Crossref] 
  41. Holzkaemper, A., Calanca, P., & Fuhrer, J. (2011). Analyzing climate impacts on agriculture in time and space. Procedia Environmental Sciences, 3, 58–62. https://doi.org/10.15406/mojes.2017.02.00026 [Google Scholar] [Crossref] 
  42. Türkiye Cumhuriyeti Devleti Meteoroloji Genel Müdürlüğü (MGM). (2022). Doluzararı. https://www.mgm.gov.tr/FILES/genel/makale/doluzarari.pdf (Erişim tarihi: 27.09.2022) [Google Scholar]
  43. Hyvärinen, V. (2003). Trends and characteristics of hydrological time series in Finland. Nordic Hydrology, 34, 71–91. [Google Scholar]
  44. IPCC. (2014). Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In C. B. Field, V. R. Barros, D. J. Dokken, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, & al. (Eds.), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. [Google Scholar]
  45. IPCC. (2001). Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. [Google Scholar]
  46. IPCC. (2014). Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, & al. (Eds.), Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. [Google Scholar]
  47. Jassogne, L., Laderach, P., & Van Asten, P. (2018). Impact of climate change on coffee in Uganda: Lessons from a case study in the Rwenzori Mountains. https://www.oxfamblogs.org/eastafrica/wp-content/uploads/2010/09/rr-impact-climate-change-coffee-uganda-030413-en.pdf (Erişim tarihi: 12.06.2018) [Google Scholar]
  48. Jelgersma, S. (1988). A future sea level rise: Impacts on coastal plains. In Geology and Urban Development: Atlas of Urban Geology, Volume 1 (pp. 61-81). UN-ESCAP.Kapluhan, E. (2013). Drought and its impact on agriculture in Turkey. Marmara Geography Journal, (27), 487-510. [Google Scholar]
  49. Kassam, A. H., van Velthuizen, H. T., Fischer, G. W., & Shah, M. M. (1993). Agro-ecological land resource assessment for agricultural development planning: A case study in Kenya: Resource database and land productivity master report (ISBN 92-5103303-X). FAO, Rome, Italy. [Google Scholar]
  50. Kenny, G. J., & Harrison, P. A. (1992). Effects of climate variability and change on grape suitability in Europe. Journal of Wine Research, 3, 163–183. [Google Scholar]
  51. Kenny, G. J., Harrison, P. A., Olesen, J. E., & Parry, M. L. (1993). Impacts of climate change on land suitability of cereal maize, winter wheat, and cauliflower in Europe. European Journal of Agriculture, 2, 325–338. [Google Scholar]
  52. Kevin, C. U., & Nicholas, O. (2010). Climate change impacts on water resources in Africa: The role of adapted, climate-adapted. December 2010. [Google Scholar]
  53. Kline, G. L. (2012). The pain of rain. Sanctuary Soil. Retrieved from http://sanctuarysoil.com/effects-of-rain-on-soil-fertility-guest-post-by-gary-kline/ [Google Scholar]
  54. Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Kabat, P., Jiménez, B., Miller, K. A., Oki, T., Sen, Z., & Shiklomanov, I. A. (2007). Freshwater resources and management. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van der Linden, & C. E. Hanson (Eds.), Climate Change 2007: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 173–210). Cambridge University Press. [Google Scholar]
  55. Parry, M. L., Canziani, O. F., Palutikof, J. P., Van der Linden, P. J., & Hanson, C. E. (Eds.). (2007). Climate change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 173–210). Cambridge University Press. [Google Scholar]
  56. Sinn, H. W. (2016). The Green Paradox: A Supply-Side Approach to Global Warming. Koç University Press. [Google Scholar]
  57. Sombroek, W. G., & Zonneveld, L. S. (1971). Ancient dune fields and fluviatile deposits in the Rima-Sokoto river basin (N.W. Nigeria). Stiboka (Staring Centre). Soil Survey Paper No. 5. Wageningen. [Google Scholar]
  58. Sombroek, W. G. (1990). Soils in a warmer world: The tropics. In Scharpenseel et al. (Eds.), Climate Change and Soil Processes (pp. 157–174). [Google Scholar]
  59. Stanley, D. J. (1988). Subsidence in the northeastern Nile delta: Rapid rates, possible causes, and consequences. Science, 240, 497–500. [Google Scholar]
  60. Stern, N. (2006). The economics of climate change: The Stern Review. Cambridge University Press. [Google Scholar]
  61. Stigliani, W. M. (1988). Changes in assessed ‘capacities’ of soils and sediments as indicators of nonlinear and time-delayed environmental impacts. Environmental Monitoring and Assessment, 10, 245–307. [Google Scholar]
  62. Taşkın, Ö., Somuncu, M., & Çapar, G. (2022). An assessment of the impacts of climate change on water resources and agriculture in Turkey. In TÜCAUM 2022 International Geography Symposium (12–14 October 2022, Ankara). [Google Scholar]
  63. Türkeş, M., Sümer, U. M., & Çetiner, G. (2000). Global climate change and its possible effects. Ministry of Environment, United Nations Framework Convention on Climate Change Seminar Notes, Istanbul, Turkey, 13 April 2000. [Google Scholar]
  64. Van Breemen, N. (1990). The effects of anthropogenic atmospheric pollution on soils. In Climate Change and Soil Processes (pp. 137–144). UNEP, Nairobi. [Google Scholar]
  65. Warrick, R., & Farmer, G. (1990). The greenhouse effect, climate change, and rising sea levels: Implications for development. Transactions of the Institute of British Geographers, 15, 5–20. [Google Scholar]
  66. WWF. (2014). Turkey's Ecological Footprint Report. Retrieved from https://www.wwf.org.tr/?3560/yasayangezegenraporu2014ozet [Google Scholar]
  67. Yavaş, İ., Ünay, A., & Şimşek, S. (2011). The effects of water accumulation on plants and soil. ADÜ Faculty of Agriculture Journal, 8(2), 57–61. [Google Scholar]
  68. Yıldız, N. (2012). Fundamentals of Plant Nutrition and Symptoms of Nutritional Disorders in Plants (ISBN 978-605-62759-0-6). Eser Ofset Printing. [Google Scholar]
  69. Lal, R. (2010). Managing soils and ecosystems to reduce anthropogenic carbon emissions and advance global food security. BioScience, 60, 708–721. [Google Scholar]
  70. Lane, A., & Jarvis, A. (2007). Climate changes will alter the geography of crop suitability: Agricultural biodiversity can aid adaptation. SAT eJournal, 4(1), 1–12.Lehmann, L., Abiven, S., Kleber, M., Pan, G., Singh, B.P., Sohi, S. & Zimmerman, A. (2015). Persistence of biochar in soils. In J. Lehmann & S. Joseph, eds., Biochar for Environmental Management. Science and Technology, 2nd ed. [Google Scholar]
  71. Lucas, Y., Boulet, R., Chauvel, A., & Veillon, L. (1987). Systèmes sols ferrallitiques-podzols en région amazonienne. In D. Righi & A. Chauvel (Eds.), Podzols and podzolization (pp. 53–68). AFES-INRA. [Google Scholar]
  72. Maslin, M. (2011). Global heating. Dost Publications. [Google Scholar]
  73. McKyes, E., Sethi, A., & Yong, R. N. (1974). Amorphous coatings on sensitive clay soil particles. Clays and Clay Minerals, 22, 427–433. [Google Scholar]
  74. Munang, R., Johnson, N. Nkem, ZhenHan, (2013). Using data digitization to inform climate change adaptation policy: Informing the future using the present. Weather and Climate Extremes. http://dx.doi.org/10.1016/j.wace.2013.07.001 [Google Scholar]
  75. Nadaroğlu, Y., & Şimşek, O. (2022). Hail damage in agriculture and protection ways. [Access link]. [Google Scholar]
  76. Olesen, J. E., & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use, and policy. European Journal of Agricultural Science, 16(4), 239–262. [Google Scholar]
  77. Öztürk, K. (2002). Global climate change and potential impacts on Turkey. Gazi University Gazi Faculty of Education Journal, 22(1), 47–65. [Google Scholar]
  78. Pierzynski, G. M., Sims, J. T., & Vance, G. F. (2009). Soils and environmental quality (3rd ed.). CRC Press. [Google Scholar]
  79. Reinsch, S., Koller, E., Sowerby, A., De Dato, G., Estiarte, M., Guidolotti, G., ... & Emmett, B. A. (2017). Shrub primary production and soil respiration diverge along the European climate gradient. Scientific Reports, 7(1), 43952. https://doi.org/10.1038/srep43952 [Google Scholar] [Crossref] 
  80. Salinger, M. J., Stigter, C. J., & Das, H. P. (2000). Agro-meteorological adaptation strategies to increasing climate variability and climate change. Agricultural and Forest Meteorology, 103(1-2), 167–184. [Google Scholar]
  81. Sinn, H. W. (2016). The Green Paradox: A Supply-Side Approach to Global Warming. Koç University Press. [Google Scholar]
  82. Sombroek, W. G., & Zonneveld, L. S. (1971). Ancient dune fields and fluviatile deposits in the Rima-Sokoto river basin (N.W. Nigeria). Stiboka (Staring Centre). Soil Survey Paper No. 5. [Google Scholar]
  83. Sombroek, W. G. (1990). Soils in a warmer world: The tropics. In Scharpenseel et al. (Eds.), Climate Change and Soil Processes (pp. 157–174). [Google Scholar]
  84. Stanley, D. J. (1988). Subsidence in the northeastern Nile delta: Rapid rates, possible causes, and consequences. Science, 240, 497–500. [Google Scholar]
  85. Stern, N. (2006). The economics of climate change: The Stern Review. Cambridge University Press. [Google Scholar]
  86. Stigliani, W. M. (1988). Changes in assessed ‘capacities’ of soils and sediments as indicators of nonlinear and time-delayed environmental impacts. Environmental Monitoring and Assessment, 10, 245–307. [Google Scholar]
  87. Sun, F., Chen, Y., Li, Y., Li, Z., Duan, W., Zhang, Q., & Chuan, W. (2022). Incorporating relative humidity improves the accuracy of precipitation phase discrimination in High Mountain Asia. Atmospheric Research, 271, 106094.https://doi.org/10.1016/j.atmosres.2022.106094 [Google Scholar] [Crossref] 
  88. Taşkın, Ö., Somuncu, M., & Çapar, G. (2022). An assessment of the impacts of climate change on water resources and agriculture in Turkey. In TÜCAUM 2022 International Geography Symposium (12–14 October 2022, Ankara). [Google Scholar]
  89. Türkeş, M., Sümer, U. M., & Çetiner, G. (2000). Global climate change and its possible effects. Ministry of Environment, United Nations Framework Convention on Climate Change Seminar Notes, Istanbul, Turkey, 13 April 2000. [Google Scholar]
  90. Van Breemen, N. (1990). The effects of anthropogenic atmospheric pollution on soils. In Climate Change and Soil Processes (pp. 137–144). UNEP. [Google Scholar]
  91. Warrick, R., & Farmer, G. (1990). The greenhouse effect, climate change, and rising sea levels: Implications for development. Transactions of the Institute of British Geographers, 15, 5–20.WWF (2014). Turkey's Ecological Footprint Report. https://www.wwf.org.tr/?3560/yasayangezegenraporu2014ozet [Google Scholar]
  92. Yavaş, İ., Ünay, A., & Şimşek, S. (2011). The effects of water accumulation on plants and soil. ADÜ Faculty of Agriculture Journal, 8(2), 57–61. [Google Scholar]
  93. Yıldız, N. (2012). Fundamentals of plant nutrition and symptoms of nutritional disorders in plants. Eser Ofset Printing. ISBN 978-605-62759-0-6. [Google Scholar]
  94. Troy, B. N. (2015). APA citation rules. In S. T. Williams (Ed.), A guide to citation rules (2nd ed., pp. 50–95). New York, NY: Publishers. [Google Scholar]
  95. Troy, B. N. (2015). APA citation rules. In S. T. Williams (Ed.), A guide to citation rules (2nd ed., pp. 50–95). Retrieved from https://www.mendeley.com/reference-management/reference-manager. [Google Scholar]
  96. Williams, S. T. (Ed.). (2015). Referencing: A guide to citation rules (3rd ed.). New York, NY: My Publisher. [Google Scholar]