International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(4) 307-323

The Relationship Between Certain Oak Species and Ecological Factors: An Analysis of Indicator Plant Species in Bozdağlar

Ayşegül Tekeş & Kürşad Özkan

pp. 307 - 323   |  DOI: https://doi.org/10.29329/ijiaar.2024.1109.4

Publish Date: December 31, 2024  |   Single/Total View: 24  |  Single/Total Download: 29


Abstract

This study aims to examine the relationships between Quercus cerris L. var. cerris, Quercus coccifera L., and Quercus infectoria Oliv. subsp. boissieri (Reut.) O.Schwarz and ecological variables using indicator species analysis and logistic regression methods. The modeling results demonstrated significant and high-accuracy performance for each species. For Q. cerris, the model yielded an AUC value of 0.774 for the training dataset and 0.761 for the test dataset, indicating "good" performance. The species' distribution was influenced by the variables BIO7, BIO3, BIO1, RUGI, and BIO12. For Q. coccifera, the model showed an AUC value of 0.892 for the training dataset and 0.887 for the test dataset, reflecting "very good" performance. The distribution of this species was primarily determined by BIO12 and BIO1. The model for Q. infectoria achieved an AUC value of 0.766 for the training dataset and 0.736 for the test dataset, indicating "good" performance, with BIO12 and BIO3 identified as the key variables affecting its distribution. Indicator species analysis was conducted using PC-ORD software to identify indicator species. The analysis revealed 11 positive and 31 negative indicator plant species for Q. cerris. For Q. coccifera, 8 positive and 1 negative indicator plant species were identified. Similarly, Q. infectoria was associated with 22 positive and 1 negative indicator plant species. This study provides a crucial foundation for understanding the distribution of oak species by integrating climate scenarios into modeling approaches, facilitating the prediction of climate change impacts and the development of strategies to mitigate these effects. The findings are expected to offer valuable insights into the ecological functionality and sensitivity of target species to environmental changes, serving as a reference for similar studies in various geographic regions. Additionally, this research establishes a significant scientific basis for sustainable forest management planning and biodiversity conservation, particularly within the Mediterranean Basin.

Keywords: Ecological Characteristics, Indicator Species, Indicator Species Analysis, Logistic Regression, Modeling, Quercus Spp


How to Cite this Article?

APA 7th edition
Tekes, A., & Ozkan, K. (2024). The Relationship Between Certain Oak Species and Ecological Factors: An Analysis of Indicator Plant Species in Bozdağlar. International Journal of Innovative Approaches in Agricultural Research, 8(4), 307-323. https://doi.org/10.29329/ijiaar.2024.1109.4

Harvard
Tekes, A. and Ozkan, K. (2024). The Relationship Between Certain Oak Species and Ecological Factors: An Analysis of Indicator Plant Species in Bozdağlar. International Journal of Innovative Approaches in Agricultural Research, 8(4), pp. 307-323.

Chicago 16th edition
Tekes, Aysegul and Kursad Ozkan (2024). "The Relationship Between Certain Oak Species and Ecological Factors: An Analysis of Indicator Plant Species in Bozdağlar". International Journal of Innovative Approaches in Agricultural Research 8 (4):307-323. https://doi.org/10.29329/ijiaar.2024.1109.4

References
  1. Acarer, A. (2024). Role of Climate Change on Oriental Spruce (Picea orientalis L.): Modeling and Mapping. BioResources, 19(2), 3845-3856. https://doi.org/10.15376/biores.19.2.3845-3856 [Google Scholar] [Crossref] 
  2. Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., & Schirone, B. (2017). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17, 143-156. https://doi.org/10.1007/s10113-016-0987-2 [Google Scholar] [Crossref] 
  3. Atalay, İ. & Efe, R. (2015). Türkiye biyocoğrafyası. Meta Basım Matbaacılık, İzmir. [Google Scholar]
  4. Atalay, İ., Siler, M., & Altunbaş, S. (2022). Türkiye’de Oyuntu Erozyonu Oluşumu ile Ana Materyal Arasındaki İlişkiler. Coğrafi Bilimler Dergisi, 20(1), 84-120. https://doi.org/10.33688/aucbd.982732 [Google Scholar] [Crossref] 
  5. Babalik, A. A., Sarikaya, O., & Orucu, O. K. (2021). The Current and future compliance areas of Kermes Oak (Quercus coccifera L.) under climate change in Turkey. Fresenius Environmental Bulletin, 30(01), 406-413. [Google Scholar]
  6. Bekat, L. & Oflas, S. (1990). Bozdağ (Ödemiş) Vejetasyonu. X. Ulusal Biyoloji Kongresi, 18-20 Temmuz 1990, Erzurum, Türkiye, 257-270. [Google Scholar]
  7. Conrad, A. O., Crocker, E. V., Li, X., Thomas, W. R., Ochuodho, T. O., Holmes, T. P., & Nelson, C. D. (2020). Threats to oaks in the eastern United States: perceptions and expectations of experts. Journal of Forestry, 118(1), 14-27. https://doi.org/10.1093/jofore/fvz056 [Google Scholar] [Crossref] 
  8. Davis, P. H. (1965-1985). Flora of Turkey and the East Aegean Island (Vols.1- 9). Edinburgh, Edinburgh University Press. [Google Scholar]
  9. Davis, P. H., Mill, R.R. & Tan, K. (1988). Flora of Turkey and the East Aegean Islands (Vol. 10 (suppl.)). Edinburgh, Edinburgh University Press. [Google Scholar]
  10. Fei, S., Kong, N., Steiner, K. C., Moser, W. K., & Steiner, E. B. (2011). Change in oak abundance in the eastern United States from 1980 to 2008. Forest Ecology and Management, 262(8), 1370-1377. https://doi.org/10.1016/j.foreco.2011.06.030 [Google Scholar] [Crossref] 
  11. Gülsoy, S., & Özkan, K. (2013). Determination of environmental factors and indicator plant species for site suitability assessment of Crimean Juniper in the Acipayam District, Turkey. Sains Malaysiana, 42(10), 1439-1447. [Google Scholar]
  12. Günal, N. (1987). Gediz ve Büyük Menderes arasındaki sahanın bitki örtüsü özellikleri. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü Dergisi, 3(4), 93-104. [Google Scholar]
  13. Güner, A., Özhatay, N., Ekim, T. & Baser, K.H.C. (2000). Flora of Turkey and the East Aegean Islands (Vol 11 (suppl.)). Edinburgh, Edinburgh Univ Press. [Google Scholar]
  14. Habibi, M. (2016). Investigating the impact of climate changes on qualitative and quantitative growth of oak trees (case study: central Zagros). Open Journal of Ecology, 6(6), 358-366. https://doi.org/10.4236/oje.2016.66034 [Google Scholar] [Crossref] 
  15. Khanhasani, M., Sagheb-Talebi, K., Noori, F., & Khodakarami, Y. (2015). Effect of Soil and Physiographic Factors on Habitats Differentiation of Three Oak Species:(Q. infectoria, Q. libani and Q. brantii). International Journal of Scientific Research in Environmental Sciences, 3(2), 62. https://doi.org/10.12983/ijsres-2015-p0062-0070 [Google Scholar] [Crossref] 
  16. Koçman, A. (1984). Bozdağlar ve çevresinin iklimi. Ege Coğrafya Dergisi; 2(1), 57-108. [Google Scholar]
  17. Koçman, A. (1985). İzmir-Bozdağlar yöresinin yapısal jeomorfolojisi ve evrimi. Ege Coğrafya Dergisi, 3(1), 63-86. [Google Scholar]
  18. Koçman, A. (1989). Uygulamalı fiziki coğrafya çalışmaları ve İzmir-Bozdağlar Yöresi üzerinde araştırmalar. İzmir, Ege Üniversitesi. [Google Scholar]
  19. Kremer, A., Abbott, A. G., Carlson, J. E., Manos, P. S., Plomion, C., Sisco, P., ... & Vendramin, G. G. (2012). Genomics of fagaceae. Tree Genetics & Genomes, 8, 583-610. https://doi.org/10.1007/s11295-012-0498-3 [Google Scholar] [Crossref] 
  20. McCune, B. & Mefford, M. J. (2011). PC-ORD. Multivariate Analysis of Ecological Data. Version 6.08, MjM Software, Gleneden Beach, Oregon, U.S.A. [Google Scholar]
  21. Mészáros, I., Adorján, B., Nyitrai, B., Kanalas, P., Oláh, V., & Levanič, T. (2022). Long-term radial growth and climate-growth relationships of Quercus petraea (Matt.) Liebl. and Quercus cerris L. in a xeric low elevation site from Hungary. Dendrochronologia, 76, 126014. ttps://doi.org/10.1016/j.dendro.2022.126014   [Google Scholar]
  22. OGM, (2020). Orman Genel Müdürlüğü Faaliyet Raporu. https://www.ogm.gov.tr/tr/ormanlarimiz/Turkiye-Orman-Varligi (Son Erişim Tarihi: 25.07.2024). [Google Scholar]
  23. Özdemir, S. (2024). Effects of environmental variables on taxonomic diversity and grouping of plant communities in the Mediterranean region (Antalya). European Journal of Forest Research, 1-12. https://doi.org/10.1007/s10342-024-01736-3 [Google Scholar] [Crossref] 
  24. Özdemir, S. (2024). Testing the Effect of Resolution on Species Distribution Models Using Two Invasive Species. Polish Journal of Environmental Studies, 33(2), 1325-1335. https://doi.org/10.15244/pjoes/166353 [Google Scholar] [Crossref] 
  25. Özdemir, S., & Çınar, T. (2023). Determining indicator plant species of Pinus brutia Ten. Site index classes using interspecific correlation analysis in Antalya (Turkey). Cerne, 29, e-103188. https://doi.org/10.1590/01047760202329013188 [Google Scholar] [Crossref] 
  26. Özdemir, S., Gülsoy, S., & Mert, A. (2020). Predicting the effect of climate change on the potential distribution of Crimean Juniper. Kastamonu University Journal of Forestry Faculty, 20(2), 133-142. https://doi.org/10.17475/kastorman.801847 [Google Scholar] [Crossref] 
  27. Özdemir, S., Negiz, M. G., Turhan, U. U., Şenol, A., & Arslan, M. (2017). Indicator plant species of alpha diversity in Kuyucak Mountain district. Turkish Journal of Forestry, 18(2), 102-109. https://doi.org/10.18182/tjf.289095 [Google Scholar] [Crossref] 
  28. Özturk, M., & Altay, V. (2021). Role of Quercus coccifera (= Q. calliprinos) in the light of climate change scenarios in the Mediterranean Basin. Plant & Fungal Research, 4(2), 8-20. https://doi.org/10.30546/2664-5297.2021.4.2.2 [Google Scholar] [Crossref] 
  29. Peñuelas, J., & Sardans, J. (2021). Global change and forest disturbances in the Mediterranean basin: Breakthroughs, knowledge gaps, and recommendations. Forests, 12(5), 603. ttps://doi.org/10.3390/f12050603 [Google Scholar]
  30. Plieninger, T., Schaich, H., & Kizos, T. (2011). Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean. Regional Environmental Change, 11, 603-615. https://doi.org/10.1007/s10113-010-0192-7 [Google Scholar] [Crossref] 
  31. Siddig, A. A., Ellison, A. M., Ochs, A., Villar-Leeman, C., & Lau, M. K. (2016). How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecological Indicators, 60, 223-230. https://doi.org/10.1016/j.ecolind.2015.06.036 [Google Scholar] [Crossref] 
  32. Stavi, I., Thevs, N., Welp, M., & Zdruli, P. (2022). Provisioning ecosystem services related with oak (Quercus) systems: a review of challenges and opportunities. Agroforestry Systems, 96(2), 293-313. https://doi.org/10.1007/s10457-021-00718-3 [Google Scholar] [Crossref] 
  33. Stump, A. J., Bershing, K., Bal, T. L., & Külheim, C. (2024). Current and Future Insect Threats to Oaks of the Midwest, Great Lakes, and Northeastern United States and Canada. Forests, 15(8), 1361. https://doi.org/10.3390/f15081361 [Google Scholar] [Crossref] 
  34. Swets, J. A. (1988). “Measuring the accuracy of diagnostic systems”, Science, 240, 1285-1293. https://doi.org/10.1126/science.3287615 [Google Scholar] [Crossref] 
  35. Şentürk, Ö., Gülsoy, S., & Tümer, İ. (2019). Potential Distribution Modeling and Mapping of Brutian Pine Stands in the Inner Parts of the Middle Black Sea Region in Turkey. Polish Journal of Environmental Studies, 28(1). https://doi.org/10.15244/pjoes/81682 [Google Scholar] [Crossref] 
  36. Tantray, Y. R., Wani, M. S., & Hussain, A. (2017). Genus Quercus: an overview. International Journal of Advance Research in Science and Engineering, 6(8), 1880-1886. [Google Scholar]
  37. Tekeş, A. (2024). Ege Bölgesi-Bozdağlar Yöresi'nde bitki tür çeşitliliğinin günümüz ve iklim değişimi altında potansiyel dağılım modellemesi ve haritalaması. Isparta Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Doktora Tezi.  [Google Scholar]
  38. Tekpinar, A. D., Aktaş, C., Kansu, Ç., Duman, H., & Kaya, Z. (2021). Phylogeography and phylogeny of genus Quercus L.(Fagaceae) in Turkey implied by variations of trnT (UGU)-L (UAA)-F (GAA) chloroplast DNA region. Tree Genetics & Genomes, 17, 1-18. https://doi.org/10.1007/s11295-021-01522-x [Google Scholar] [Crossref] 
  39. Yaltırık, F. (1984). Türkiye meşeleri: teşhis kılavuzu. Yenilik Basımevi. İstanbul. [Google Scholar]
  40. Yılmaz, H. (2018). Quercus L. (Ed. Ü. Akkemik) Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları. Orman Genel Müdürlüğü Yayınları, Ankara. s: 338-356.     [Google Scholar]