International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(4) 277-288

The Effects of Chitosan Applications on Seed Germing and Early Seedling Period of Red Beet (Beta vulgaris L.) Under Salty Conditions

Ayşe Nur Şavkan & Ayşe Çandar

pp. 277 - 288   |  DOI: https://doi.org/10.29329/ijiaar.2024.1109.1

Publish Date: December 31, 2024  |   Single/Total View: 23  |  Single/Total Download: 26


Abstract

Salinity is a global problem and can significantly reduce agricultural productivity and cause negative effects on plant growth. Chitosan is a natural biopolymer and is known to have plant growth promoting and stress reducing properties. This study aimed to determine the effect of chitosan applications on seed germination and early seedling growth in red beet under saline conditions. In the experiment, seeds of red beetroot were soaked in chitosan and pure water at concentrations of 100-200-300 ppm for one hour. Then the seeds were allowed to dry for 24 hours and germinated at 22/24°C at 100 mM salt concentration for 10 days. In the study, various growth parameters such as seed germination rate, velocity and vigour as well as root and shoot length were determined. At the end of the experiment, it was found that hydropriming and chitosan treatments significantly improved the parameters observed in red beet seeds compared to the control. In particular, 300 ppm chitosan dose was effective on germination parameters, while 200 ppm chitosan dose was the most effective in reducing the negative effects of salt and increasing the growth parameters compared to control and hydropriming. These findings suggest that chitosan can be used as a potential growth promoter and protective agent for plants exposed to salt stress.

Keywords: Chitosan, Germination, Priming, Red Beetroot, Salt Stress, Seed


How to Cite this Article?

APA 7th edition
Savkan, A.N., & Candar, A. (2024). The Effects of Chitosan Applications on Seed Germing and Early Seedling Period of Red Beet (Beta vulgaris L.) Under Salty Conditions. International Journal of Innovative Approaches in Agricultural Research, 8(4), 277-288. https://doi.org/10.29329/ijiaar.2024.1109.1

Harvard
Savkan, A. and Candar, A. (2024). The Effects of Chitosan Applications on Seed Germing and Early Seedling Period of Red Beet (Beta vulgaris L.) Under Salty Conditions. International Journal of Innovative Approaches in Agricultural Research, 8(4), pp. 277-288.

Chicago 16th edition
Savkan, Ayse Nur and Ayse Candar (2024). "The Effects of Chitosan Applications on Seed Germing and Early Seedling Period of Red Beet (Beta vulgaris L.) Under Salty Conditions". International Journal of Innovative Approaches in Agricultural Research 8 (4):277-288. https://doi.org/10.29329/ijiaar.2024.1109.1

References
  1. Abro, S.A., Mahar, A.R., & Mirbahar, A.A. (2009) Improving Yield Performance of Landrace Wheat Under Salinity Stress Using On-Farm Seed Priming. Pak. J. Bot., 41(5), 2209–2216. [Google Scholar]
  2. Ahmed, R., Howlader, M. H. K., Shila, A., & Haque, M. A. (2017). Effect of salinity on germination and early seedling growth of maize. Progressive Agriculture, 28(1), 18-25. [Google Scholar]
  3. Boonlertnirun, S., Boonraung, C., & Suvanasara, R. (2008). Application of chitosan in rice production. Journal of Metals, Materials and Minerals, 18(2), 47-52. [Google Scholar]
  4. Bulut, H. (2020). Arpada tuz stresine karşı zingeronun koruyucu etkisi. Journal of the Institute of Science and Technology, 10 (4), 2932-2942. [Google Scholar]
  5. Bulut, H., & Öztürk, H. İ. (2023). Domates yetiştiriciliğinde tuz stresinin olumsuz etkilerine karşı kitosan uygulaması. Manas Journal of Agriculture Veterinary and Life Sciences, 13(1), 31-39. [Google Scholar]
  6. Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 71-76. [Google Scholar]
  7. Ceritoğlu, M., Erman, M., Çığ, F., Şahin, S., & Acar, A. (2021). Bitki gelişimi ve stres toleransının geliştirilmesi üzerine sürdürülebilir bir strateji: Priming tekniği. Türkiye Tarımsal Araştırmalar Dergisi, 8(3), 374-389. [Google Scholar]
  8. Chookhongkha, N., Sopondilok, T., & Photchanachai, S. (2012). Page 231-237. “Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality”. In Proceedings of the International Conference on Post-harvest Pest and Disease Management in Exporting Horticultural Crops - PPDM2012. [Google Scholar]
  9. Dash, M., Chiellini, F., Ottenbrite, R., & Chiellini, E. (2011). Chitosan-A versatile semi-synthetic polymer inbiomedical applications. Prog. Polym. Sci., 36(8), 981–1014. [Google Scholar]
  10. Datta, J.D., Nag, S., Banerjee, A. & Mondal, N.K. (2009). Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. J. Appl. Sci. Environ. Manag., 13(3), 93–97. [Google Scholar]
  11. Demir, I., & Mavi, K. (2008). Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology, 51(5), 897-902. [Google Scholar]
  12. Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. [Google Scholar]
  13. Jha, U.C., Bohra, A., Jha, R., & Parida, S.K., (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38, 255-277. [Google Scholar]
  14. Johnson, R., & Puthur, J.T., (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247-257. [Google Scholar]
  15. Kang, L. Y., Lu, Q. S., Shao, H. B., & Shi, P. (2017). Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region, Jiangsu. J. Agric. Sci., 33, 83-93. [Google Scholar]
  16. Kaya, M., Mujtaba, M., Bulut, E., Akyuz, B., Zelencova, L., & Sofi, K. (2015a). Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydr. Polym., 132, 9–16. [Google Scholar]
  17. Kaya, M., Bitim, B., Mujtaba, M., & Koyuncu, T. (2015b). Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora). Int. J. Biol. Macromol., 81, 443–449. [Google Scholar]
  18. Khayatnezhad, M., & Gholamin, R., (2011). Effects of salt stress levels on five maize (Zea mays L.) Cultivars at germination stage. African Journal of Biotechnology, 10(60), 12909-12915. [Google Scholar]
  19. Khodarahmpour, Z., Ifar, M., & Motamedi, M. (2012). Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. African Journal of Biotechnology, 11(2), 298-304. [Google Scholar]
  20. Li, X.X., Huang, P., Zhuang, H.D., & Du, Y.P. (2016). Research advances of stress tolerance in sweet sorghum, Jiangsu. J. Agric. Sci., 32, 1429-1433. [Google Scholar]
  21. Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. [Google Scholar]
  22. Lian-ju, M., Yueying, L., Lanlan, W., Xuemei, L., Ting, L., & Ning, B. (2014). Germination and physiological response of wheat (Triticum aestivum) to presoaking with oligochitosan. International Journal of Agriculture and Biology, 16(4), 766-770. [Google Scholar]
  23. Lizárraga-Paulín, E.-G., Miranda-Castro, S.-P., Moreno-Martínez, E., Lara-Sagahón, A.-V., & Torres-Pacheco, I. (2013). Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: their influence on some phenological and biochemical behaviors. J. Zhejiang Univ. Sci. B, 14(2), 87-96. [Google Scholar]
  24. Mondal, M.M.A., Malek, M.A., Puteh, A.B., Ismail, M. R., Ashrafuzzaman, M., & Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 685, 918-921. [Google Scholar]
  25. Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., & Ma, C. (2019). Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20(4), 799. [Google Scholar]
  26. Ologundudu, A.F., Adelusı, A.A., & Akınwale, R.O. (2014). Effect of salt stress on germination and growth parameters of rice (Oryza sativa L.). Notulae Scientia Biologicae, 6(2), 237-243. [Google Scholar]
  27. Öner, M. (2023). Mısır (Zea mays L.) bitkisinin çimlenme ve fide dönemlerinde uygulanan kitosanın fizyolojik ve morfolojik özellikler üzerine etkisi (Master's thesis). Sakarya Uygulamalı Bilimler Üniversitesi, Bahçe Bitkileri Bölümü, p.78, Sakarya, Türkiye. [Google Scholar]
  28. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 31(7), 603–632. [Google Scholar]
  29. Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 57, 397–430. [Google Scholar]
  30. Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., ... & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346-353. [Google Scholar]
  31. Seth, R. (2023). Seed priming to improve tomato productivity in salinity stressed environments: A review. Bioscience Biotech. Research Asia, 20(3), 817-826. [Google Scholar]
  32. Shahrajabian, M.H., & Petropoulos, S.A. (2023). Chitosan as plant biostimulant in modern horticulture. University of Thessaly. Retrieved from https://www.biostimulant.com/chitosan-as-plant-biostimulant-in-modern-horticulture (Accession Date: 27 January 2024). [Google Scholar]
  33. Shamov, M., Bratskaya, S.Y., & Avramenko, V. (2002). Interaction of carboxylic acids with chitosan: Effect of pK and hydrocarbon chain length. J. Colloid Interface Sci., 249(2), 316–321. [Google Scholar]
  34. Sheteiwy, M.S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y.A., El-Esawi, M.A., Pan, R., Wan, Q., & Lu, H., (2020). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041. [Google Scholar]
  35. Shukla, S.K., Mishra, A.K., Arotiba, O.A., & Mamba, B.B. (2013). Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol., 59, 46–58. [Google Scholar]
  36. Sivritepe, H.Ö., (2012). Tohum gücünün değerlendirilmesi. Alatarım Dergisi, 11(2), 33-44. [Google Scholar]
  37. Şavkan, A.N., & Çandar, A. (2024). Effects of salt stress on early seedling development and germination in some root vegetables. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(1), 60-69. [Google Scholar]
  38. Wu, G. Q., Jiao, Q., & Shui, Q. Z. (2015). Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). Plant, Soil and Environment, 61(5), 220-226. [Google Scholar]
  39. Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217(2), 523-539. [Google Scholar]
  40. Zahora, F., Surovy, M.Z., Khatun, A., Prince, Md. F.R.K., Akanda, Md. A.M., Rahman, M., & Islam, Md. T. (2019). Chitosan biostimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobotanica, 72(1), 1763, 1-8. [Google Scholar]
  41. Zhou, J., Wu, J.C., Du, B. M., & Li, P.L. (2016). A comparative study on drought resistances of four species of lianas, Jiangsu. J. Agric. SCI., 32, 674-679. [Google Scholar]
  42. Ziani, K., Ursúa, B., & Maté, J.I. (2010). Application of bioactive coatings based on chitosan for artichoke seed protection. Crop Prot., 29(8), 853-859. [Google Scholar]