- Abro, S.A., Mahar, A.R., & Mirbahar, A.A. (2009) Improving Yield Performance of Landrace Wheat Under Salinity Stress Using On-Farm Seed Priming. Pak. J. Bot., 41(5), 2209–2216. [Google Scholar]
- Ahmed, R., Howlader, M. H. K., Shila, A., & Haque, M. A. (2017). Effect of salinity on germination and early seedling growth of maize. Progressive Agriculture, 28(1), 18-25. [Google Scholar]
- Boonlertnirun, S., Boonraung, C., & Suvanasara, R. (2008). Application of chitosan in rice production. Journal of Metals, Materials and Minerals, 18(2), 47-52. [Google Scholar]
- Bulut, H. (2020). Arpada tuz stresine karşı zingeronun koruyucu etkisi. Journal of the Institute of Science and Technology, 10 (4), 2932-2942. [Google Scholar]
- Bulut, H., & Öztürk, H. İ. (2023). Domates yetiştiriciliğinde tuz stresinin olumsuz etkilerine karşı kitosan uygulaması. Manas Journal of Agriculture Veterinary and Life Sciences, 13(1), 31-39. [Google Scholar]
- Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 71-76. [Google Scholar]
- Ceritoğlu, M., Erman, M., Çığ, F., Şahin, S., & Acar, A. (2021). Bitki gelişimi ve stres toleransının geliştirilmesi üzerine sürdürülebilir bir strateji: Priming tekniği. Türkiye Tarımsal Araştırmalar Dergisi, 8(3), 374-389. [Google Scholar]
- Chookhongkha, N., Sopondilok, T., & Photchanachai, S. (2012). Page 231-237. “Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality”. In Proceedings of the International Conference on Post-harvest Pest and Disease Management in Exporting Horticultural Crops - PPDM2012. [Google Scholar]
- Dash, M., Chiellini, F., Ottenbrite, R., & Chiellini, E. (2011). Chitosan-A versatile semi-synthetic polymer inbiomedical applications. Prog. Polym. Sci., 36(8), 981–1014. [Google Scholar]
- Datta, J.D., Nag, S., Banerjee, A. & Mondal, N.K. (2009). Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. J. Appl. Sci. Environ. Manag., 13(3), 93–97. [Google Scholar]
- Demir, I., & Mavi, K. (2008). Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Brazilian Archives of Biology and Technology, 51(5), 897-902. [Google Scholar]
- Ibrahim, E.A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38-46. [Google Scholar]
- Jha, U.C., Bohra, A., Jha, R., & Parida, S.K., (2019). Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Reports, 38, 255-277. [Google Scholar]
- Johnson, R., & Puthur, J.T., (2021). Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry, 162, 247-257. [Google Scholar]
- Kang, L. Y., Lu, Q. S., Shao, H. B., & Shi, P. (2017). Effects of drought on NDVI of winter wheat growth in Binzhou irrigation region, Jiangsu. J. Agric. Sci., 33, 83-93. [Google Scholar]
- Kaya, M., Mujtaba, M., Bulut, E., Akyuz, B., Zelencova, L., & Sofi, K. (2015a). Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydr. Polym., 132, 9–16. [Google Scholar]
- Kaya, M., Bitim, B., Mujtaba, M., & Koyuncu, T. (2015b). Surface morphology of chitin highly related with the isolated body part of butterfly (Argynnis pandora). Int. J. Biol. Macromol., 81, 443–449. [Google Scholar]
- Khayatnezhad, M., & Gholamin, R., (2011). Effects of salt stress levels on five maize (Zea mays L.) Cultivars at germination stage. African Journal of Biotechnology, 10(60), 12909-12915. [Google Scholar]
- Khodarahmpour, Z., Ifar, M., & Motamedi, M. (2012). Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. African Journal of Biotechnology, 11(2), 298-304. [Google Scholar]
- Li, X.X., Huang, P., Zhuang, H.D., & Du, Y.P. (2016). Research advances of stress tolerance in sweet sorghum, Jiangsu. J. Agric. Sci., 32, 1429-1433. [Google Scholar]
- Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. [Google Scholar]
- Lian-ju, M., Yueying, L., Lanlan, W., Xuemei, L., Ting, L., & Ning, B. (2014). Germination and physiological response of wheat (Triticum aestivum) to presoaking with oligochitosan. International Journal of Agriculture and Biology, 16(4), 766-770. [Google Scholar]
- Lizárraga-Paulín, E.-G., Miranda-Castro, S.-P., Moreno-Martínez, E., Lara-Sagahón, A.-V., & Torres-Pacheco, I. (2013). Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: their influence on some phenological and biochemical behaviors. J. Zhejiang Univ. Sci. B, 14(2), 87-96. [Google Scholar]
- Mondal, M.M.A., Malek, M.A., Puteh, A.B., Ismail, M. R., Ashrafuzzaman, M., & Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 685, 918-921. [Google Scholar]
- Nadeem, M., Li, J., Yahya, M., Wang, M., Ali, A., Cheng, A., Wang, X., & Ma, C. (2019). Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 20(4), 799. [Google Scholar]
- Ologundudu, A.F., Adelusı, A.A., & Akınwale, R.O. (2014). Effect of salt stress on germination and growth parameters of rice (Oryza sativa L.). Notulae Scientia Biologicae, 6(2), 237-243. [Google Scholar]
- Öner, M. (2023). Mısır (Zea mays L.) bitkisinin çimlenme ve fide dönemlerinde uygulanan kitosanın fizyolojik ve morfolojik özellikler üzerine etkisi (Master's thesis). Sakarya Uygulamalı Bilimler Üniversitesi, Bahçe Bitkileri Bölümü, p.78, Sakarya, Türkiye. [Google Scholar]
- Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 31(7), 603–632. [Google Scholar]
- Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polym. Int., 57, 397–430. [Google Scholar]
- Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., ... & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346-353. [Google Scholar]
- Seth, R. (2023). Seed priming to improve tomato productivity in salinity stressed environments: A review. Bioscience Biotech. Research Asia, 20(3), 817-826. [Google Scholar]
- Shahrajabian, M.H., & Petropoulos, S.A. (2023). Chitosan as plant biostimulant in modern horticulture. University of Thessaly. Retrieved from https://www.biostimulant.com/chitosan-as-plant-biostimulant-in-modern-horticulture (Accession Date: 27 January 2024). [Google Scholar]
- Shamov, M., Bratskaya, S.Y., & Avramenko, V. (2002). Interaction of carboxylic acids with chitosan: Effect of pK and hydrocarbon chain length. J. Colloid Interface Sci., 249(2), 316–321. [Google Scholar]
- Sheteiwy, M.S., Shao, H., Qi, W., Daly, P., Sharma, A., Shaghaleh, H., Hamoud, Y.A., El-Esawi, M.A., Pan, R., Wan, Q., & Lu, H., (2020). Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Journal of the Science of Food and Agriculture, 101(5), 2027-2041. [Google Scholar]
- Shukla, S.K., Mishra, A.K., Arotiba, O.A., & Mamba, B.B. (2013). Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol., 59, 46–58. [Google Scholar]
- Sivritepe, H.Ö., (2012). Tohum gücünün değerlendirilmesi. Alatarım Dergisi, 11(2), 33-44. [Google Scholar]
- Şavkan, A.N., & Çandar, A. (2024). Effects of salt stress on early seedling development and germination in some root vegetables. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(1), 60-69. [Google Scholar]
- Wu, G. Q., Jiao, Q., & Shui, Q. Z. (2015). Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulation in sunflower (Helianthus annuus L.). Plant, Soil and Environment, 61(5), 220-226. [Google Scholar]
- Yang, Y., & Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt‐stress responses. New Phytologist, 217(2), 523-539. [Google Scholar]
- Zahora, F., Surovy, M.Z., Khatun, A., Prince, Md. F.R.K., Akanda, Md. A.M., Rahman, M., & Islam, Md. T. (2019). Chitosan biostimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobotanica, 72(1), 1763, 1-8. [Google Scholar]
- Zhou, J., Wu, J.C., Du, B. M., & Li, P.L. (2016). A comparative study on drought resistances of four species of lianas, Jiangsu. J. Agric. SCI., 32, 674-679. [Google Scholar]
- Ziani, K., Ursúa, B., & Maté, J.I. (2010). Application of bioactive coatings based on chitosan for artichoke seed protection. Crop Prot., 29(8), 853-859. [Google Scholar]
|