International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(4) 378-390

Microwave Drying of Persimmon Puree Using Foam Mat Technique

Hürkan Tayfun Varol & Sevil Karaaslan

pp. 378 - 390   |  DOI: https://doi.org/10.29329/ijiaar.2024.1109.9

Publish Date: January 02, 2025  |   Single/Total View: 21  |  Single/Total Download: 25


Abstract

In this study, it was aimed to determine the possibilities of drying persimmon with a microwave-assisted fan and foam mat method is the best for drying time, color and energy consumption. Persimmon puree, initially containing 82.90 % moisture content, was dried using a foam drying method augmented with microwave and fan combinations until the moisture content decreased to an average of 1.9 % ± 1.13. Soy protein (1%) and maltodextrin (1%) were employed as foaming agents in the foam drying process. Microwave drying trials conducted at 1.8 Wg-1, 3.6 Wg-1, and 5.4 Wg-1 lasted 62, 22, and 14 minutes, respectively. Combination trials at 1.8 Wg-1, 3.6 Wg-1, and 5.4 Wg-1 at 100 °C lasted 57, 23, and 13 minutes, respectively, and at 150 °C for 47, 21, and 14 minutes, respectively. Twelve thin-layer drying equations were applied to determine the drying models. Each trial's drying rate, color parameters, and energy consumption were analyzed. The lowest color change observed at highest power density and temperature (5.4 Wg-1 & 150 °C). Külcü, Alibaş , Jena-Das and Midilli models emerged as the most suitable empirical equations, evidenced by the lowest root mean square error values. Statistical analyses categorized color parameters and energy consumption. The optimal energy efficiency was achieved with the 5.4 Wg-1 microwave drying method, yielding an energy consumption value of 2.12 Whg-1.

Keywords: Microwave drying, Foam mat, color, Specific energy consumption


How to Cite this Article?

APA 7th edition
Varol, H.T., & Karaaslan, S. (2024). Microwave Drying of Persimmon Puree Using Foam Mat Technique. International Journal of Innovative Approaches in Agricultural Research, 8(4), 378-390. https://doi.org/10.29329/ijiaar.2024.1109.9

Harvard
Varol, H. and Karaaslan, S. (2024). Microwave Drying of Persimmon Puree Using Foam Mat Technique. International Journal of Innovative Approaches in Agricultural Research, 8(4), pp. 378-390.

Chicago 16th edition
Varol, Hurkan Tayfun and Sevil Karaaslan (2024). "Microwave Drying of Persimmon Puree Using Foam Mat Technique". International Journal of Innovative Approaches in Agricultural Research 8 (4):378-390. https://doi.org/10.29329/ijiaar.2024.1109.9

References
  1. Agrawal, Y. C., & Singh, R. P. (1977). Thin layer drying studies on short grain rough rice. ASAE Paper No. 3531, ASAE. [Google Scholar]
  2. Akpınar, E. K., Biçer, Y., & Cetinkaya, F. (2006). Modeling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75(2), 308–315. https://doi.org/10.1016/j.jfoodeng.2005.04.018 [Google Scholar] [Crossref] 
  3. Alibaş, İ. (2012). Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18(1), 43–53. https://doi.org/10.1501/Tarimbil_0000001191 [Google Scholar] [Crossref] 
  4. Anonymous.2024a,. https://www.viewsonic.com/library/creative-work/what-is-delta-e-and-why-is-it-important-for-color-accuracy/ Accessed; 12.2024.      [Google Scholar]
  5. Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4–6), 121–126. https://doi.org/10.1016/S0038-092X(96)00130-2 [Google Scholar] [Crossref] 
  6. Bettega, R., Rosa, J. G., Correa, R. G., & Freire, T. (2014). Comparison of carrot (Daucus carota) drying in microwave and in vacuum microwave. Brazilian Journal of Chemical Engineering, 31(3), 403–412. https://doi.org/10.1590/0104-6632.20140312s00002668 [Google Scholar] [Crossref] 
  7. Bölek, S., & Obuz, E. (2014). Quality characteristics of Trabzon persimmon dried at several temperatures and pretreated by different methods. Turkish Journal of Agriculture and Forestry, 38, 242–249. https://doi.org/10.3906/tar-1303-41 [Google Scholar] [Crossref] 
  8. Çelen, S. (2019). Effect of microwave drying on the drying characteristics, color, microstructure, and thermal properties of Trabzon persimmon. Foods, 8(2), 84. https://doi.org/10.3390/foods8020084 [Google Scholar] [Crossref] 
  9. Dadalı, G., Kılıç Apar, D., & Özbek, B. (2007). Color change kinetics of okra undergoing microwave drying. Drying Technology, 25(5), 925–936. https://doi.org/10.1080/07373930701372296 [Google Scholar] [Crossref] 
  10. De Pilli, T., Lovino, R., Maenza, S., Derossi, A., & Severini, C. (2008). Study on operating conditions of orange drying processing: comparison between conventional and combined treatment. Journal of Food Processing and Preservation, 32(5), 751-769. https://doi.org/10.1111/j.1745-4549.2008.00212.x [Google Scholar] [Crossref] 
  11. Erdem, T., Karaaslan, S., Öztekin, S., Şahan, Z., & Çiftçi, H. (2014). Microwave drying of orange peels and its mathematical models. Journal of Agricultural Machinery Science, 10(4), 329–333. [Google Scholar]
  12. Sharma, G. P., & Prasad, S. (2006). Specific energy consumption in microwave drying of garlic cloves. Energy, 31(12), 1921–1926. https://doi.org/10.1016/j.energy.2005.08.006 [Google Scholar] [Crossref] 
  13. Ge, Z., Zhang, M., Deng, X., Zhu, W., Li, K., & Li, C. (2017). Persimmon tannin promoted macrophage reverse cholesterol transport through inhibiting ERK1/2 and activating PPAR both in vitro and in vivo. Journal of Functional Foods, 38, 338–348. https://doi.org/10.1016/j.jff.2017.09.023 [Google Scholar] [Crossref] 
  14. Gu, H., Li, C., Xu, Y., Hu, W., Chen, M., & Wan, Q. (2008). Structural features and antioxidant activity of tannin from persimmon pulp. Food Research International, 41, 208–217. https://doi.org/10.1016/j.foodres.2007.11.011 [Google Scholar] [Crossref] 
  15. Jena, S., & Das, H. (2007). Modeling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79(1), 92–99. https://doi.org/10.1016/j.jfoodeng.2006.01.032 [Google Scholar] [Crossref] 
  16. Külcü, R., Karaaslan, S., & Varol, H. (2024). Microwave-assisted foam mat drying of pumpkin pulp and development of a new drying model. Journal of Scientific and Engineering Research, 11(3), 81–94. https://doi.org/10.5281/zenodo.12750262 [Google Scholar] [Crossref] 
  17. Mamet, T., Ge, Z., Zhang, Y., & Li, C. (2017). Interactions between highly galloylated persimmon tannins and pectins. International Journal of Biological Macromolecules, 106, 410–417. https://doi.org/10.1016/j.ijbiomac.2017.08.039 [Google Scholar] [Crossref] 
  18. Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71–78. https://doi.org/10.1016/S0260-8774(99)00167-3 [Google Scholar] [Crossref] 
  19. Borah, M. S., Bhagya Raj, G. V. S., Tiwari, A., & Dash, K. K. (2023). Effect of intermittent microwave convective drying on quality characteristics of persimmon fruit. Journal of Agriculture and Food Research, 14, 100816. https://doi.org/10.1016/j.jafr.2023.100816 [Google Scholar] [Crossref] 
  20. Qin, Y., Duan, Z., Zhou, S., & Wei, Z. (2022). Effect of intermittent microwave drying on nutritional quality and drying characteristics of persimmon slices. Food Science and Technology, 42, e37422. https://doi.org/10.1590/fst.37422 [Google Scholar] [Crossref] 
  21. Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281–289. https://doi.org/10.1016/j.jfoodeng.2005.03.024 [Google Scholar] [Crossref] 
  22. Sharaf-Elden, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 5, 1261–1265. https://doi.org/10.13031/2013.34757 [Google Scholar] [Crossref] 
  23. Toğrul, I. T., & Pehlivan, D. (2003). Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32. https://doi.org/10.1016/S0260-8774(02)00329-1 [Google Scholar] [Crossref] 
  24. Tülek, Y., & Demiray, E. (2014). Effect of hot air drying and different pretreatments on color and drying characteristics of persimmons. Journal of Agricultural Sciences, 20, 27–37. [Google Scholar]
  25. Varol, H. T., Karaaslan, S., Külcü, R., & Sivri, D. S. (2024). Microwave-assisted foam mat drying of kumquat puree and investigation of some parameters. BIO Web of Conferences, 85, 01029. https://doi.org/10.1051/bioconf/20248501029 [Google Scholar] [Crossref] 
  26. Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301. https://doi.org/10.13031/2013.32245 [Google Scholar] [Crossref] 
  27. Vilhena, N. Q., Gil, R., Llorca, E., Moraga, G., & Salvador, A. (2020). Physico-chemical and microstructural changes during the drying of persimmon fruit cv. Rojo Brillante harvested in two maturity stages. Foods, 9(7), 870. https://doi.org/10.3390/foods9070870 [Google Scholar] [Crossref] 
  28. Wei, Z., Duan, Z., Tang, X., et al. (2022). Effects of microwave drying on nutrient component and antioxidant activity of persimmon slices. Food Measure, 16, 1744–1753. https://doi.org/10.1007/s11694-021-01273-2 [Google Scholar] [Crossref] 
  29. White, G. M., Bridges, T. C., Loewer, O. J., & Ross, I. J. (1981). Thin layer drying model for soybeans. Transactions of the ASAE, 24, 1643. https://doi.org/10.13031/2013.34506 [Google Scholar] [Crossref] 
  30. Yaldız, O., Ertekin, C., & Uzun, H. I. (2001). Mathematical modelling of thin layer solar drying of Sultana grapes. Energy, 26, 457–465. https://doi.org/10.1016/S0360-5442(01)00018-4 [Google Scholar] [Crossref] 
  31. Yan, W.-Q., Zhang, M., Huang, L.-L., Tang, J., Mujumdar, A. S., & Sun, J.-C. (2010). Studies on different combined microwave drying of carrot pieces. International Journal of Food Science & Technology, 45, 2141–2148. https://doi.org/10.1111/j.1365-2621.2010.02380.x [Google Scholar] [Crossref] 
  32. Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., Li, C., & Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67–76. https://doi.org/10.1016/j.fbp.2019.08.018 [Google Scholar] [Crossref]