International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(3) 200-217

Effects of Microbial Fertisizer on Yield and Quality of Curly Lettuce Grown in Pots

Ufuk Uçan, Halil Demir & Hasan Kayhan Yalçi

pp. 200 - 217   |  DOI: https://doi.org/10.29329/ijiaar.2024.1075.3

Published online: September 30, 2024  |   Number of Views: 4  |  Number of Download: 9


Abstract

Microbial fertilisers containing various microorganisms that are in a symbiotic relationship within each other and with plant roots have positive effects on plant growth, development and flowering. They can be used in conventional, organic and sustainable agriculture systems and reduce chemical fertiliser consumption. In this study conducted under greenhouse conditions, the effects of Herasim microbial fertiliser on yield and some quality characteristics of lettuce were investigated. Caipira (Lactuca sativa var. crispa) lettuce cultivar was used as plant material. In pot trials, 70% peat + 30% perlite mixture was used as a growing medium. A total of 9 different treatments were included in the research: Control (C), 100% Chemical Fertilisation (100% CF), 50% Chemical Fertilisation + Microbial Fertilisation (50% CF + MF), 75% Chemical Fertilisation + Microbial Fertilisation (75% CF + MF), 100% Chemical Fertilisation + Microbial Fertilisation (100% CF + MF), Immersion + Chemical Fertilisation (I + CF), Microbial Fertilisation alone (MF), 50% Chemical Fertilisation + Microbial Fertilisation + Foliar Microbial Fertilisation (50% CF + MF + FMF), 75% Chemical Fertilisation + Microbial Fertilisation + Foliar Microbial Fertilisation (75% CF + MF + FMF). Head height (cm), root collar diameter (mm), number of leaves (number/plant), leaf colour (L*, a* and b*), chlorophyll (SPAD), soluble solids (%SS), pH, total and marketable yield (g/plant) criteria were examined.  The total and marketable yield results obtained from 100% CF + MF, I + CF, 75% CF + MF, 75% CF + MF + FMF and 50% CF + MF + FMF treatments were the highest and very similar to that of 100% CF treatment. In addition, similar or better results were obtained for the same treatments in terms of lettuce growth, colour, chlorophyll and SS criteria.

Keywords: Biofertiliser, Chlorophyll, Colour, Microbial Fertilisation, Lettuce, Quality


How to Cite this Article

APA 6th edition
Ucan, U., Demir, H. & Yalci, H.K. (2024). Effects of Microbial Fertisizer on Yield and Quality of Curly Lettuce Grown in Pots . International Journal of Innovative Approaches in Agricultural Research, 8(3), 200-217. doi: 10.29329/ijiaar.2024.1075.3

Harvard
Ucan, U., Demir, H. and Yalci, H. (2024). Effects of Microbial Fertisizer on Yield and Quality of Curly Lettuce Grown in Pots . International Journal of Innovative Approaches in Agricultural Research, 8(3), pp. 200-217.

Chicago 16th edition
Ucan, Ufuk, Halil Demir and Hasan Kayhan Yalci (2024). "Effects of Microbial Fertisizer on Yield and Quality of Curly Lettuce Grown in Pots ". International Journal of Innovative Approaches in Agricultural Research 8 (3):200-217. doi:10.29329/ijiaar.2024.1075.3.

References
  1. Aćamović-Djoković, G., Pavlović, R., Mladenović, J., & Djurić, M. (2011). Vitamin C content of different types of lettuce varieties. Acta Agric Serb, 16(32), 83-89. [Google Scholar]
  2. Aksoy, U., Altındişli, A. (1998). Ekolojik (Organik, Biyolojik) Tarım. ETOD, 125s, İzmir. [Google Scholar]
  3. Aksoy, U. (1999). Ekolojik tarımdaki gelişmeler. Ekolojik Tarım, Ekolojik Tarım Organizasyonu Derneği, Emre Basımevi, İzmir. [Google Scholar]
  4. Antoun, H., & Prévost, D. (2006). Ecology of plant growth promoting rhizobacteria. PGPR: Biocontrol and biofertilization, 1-38. [Google Scholar]
  5. Awaad, M. S., Badr, R. A., Badr, M. A., & Abd-elrahman, A. H. (2016). Effects of different nitrogen and potassium sources on lettuce (Lactuca sativa L.) yield in a sandy soil. Eurasian Journal of Soil Science, 5(4), 299-306. [Google Scholar]
  6. Aybak H.Ç. 2002. Salata/Marul Yetiştiriciliği. ISBN: 975-8377-20-5, (sayfa sayısı 96), İstanbul: Hasad Yayıncılık (in Turkish). [Google Scholar]
  7. Chauhan, H., & Bagyaraj, D. J. (2015). Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Scientia Horticulturae, 197, 441-446. [Google Scholar]
  8. Chen, Y., Mei, R., Lu, S., Liu, L., & Kloepper, J. W. (1996). The use of yield increasing bacteria (YIB) as plant growth promoting rhizobacteria in Chinese agriculture. In R. S. Uthkede, and W. K. Gupta (Eds.), Management of soil borne diseases (pp. 164–184). Ludhiana: Kalyani Publishers. [Google Scholar]
  9. Chen, J. H. (2006, October). The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use (Vol. 16, No. 20, pp. 1-11). Land Development Department Bangkok Thailand. [Google Scholar]
  10. Colla, G., Suárez, C. M. C., Cardarelli, M., & Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45(4), 559-565. [Google Scholar]
  11. Colla, G., Rouphael, Y., Mirabelli, C., & Cardarelli, M. (2011). Nitrogen‐use efficiency traits of mini‐watermelon in response to grafting and nitrogen‐fertilization doses. Journal of Plant Nutrition and Soil Science, 174(6), 933-941. [Google Scholar]
  12. Colonna, E., Rouphael, Y., Barbieri, G., & De Pascale, S. (2016). Nutritional quality of ten leafy vegetables harvested at two light intensities. Food chemistry, 199, 702-710. [Google Scholar]
  13. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 71(9), 4951-4959. [Google Scholar]
  14. Demir, H., Yalçi, H. K., & Katgici, A. (2023). Ameliorative effects of microbial fertiliser on yield and quality parameters of curly lettuce and cucumber with fertiliser saving. Folia Horticulturae, 35(1), 91-106. [Google Scholar]
  15. Fálico, L., García, B., Sillon, M., & Visintin, G. (2000). Bacillus sp. and growth promotion in soybean. In Proceedings 5th International PGPR Workshop (p. 40). [Google Scholar]
  16. Goessler, W., & Kuehnelt, D. (2002). Analytical methods for the determination of arsenic and arsenic compounds in the environment. Environmental chemistry of arsenic, 27-50. [Google Scholar]
  17. Gravel, V., Antoun, H., & Tweddell, R. J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil biology and Biochemistry, 39(8), 1968-1977. [Google Scholar]
  18. Gupta, A., & Sen, S. (2013). Role of biofertilisers and biopesticides for sustainable agriculture, scholar. google. com. [Google Scholar]
  19. Haque, M. M., Ilias, G. N. M., & Molla, A. H. (2012). Impact of Trichoderma-enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). [Google Scholar]
  20. Kafi, S. A., Arabhosseini, S., Karimi, E., Koobaz, P., Mohammadi, A., & Sadeghi, A. (2021). Pseudomonas putida P3-57 induces cucumber (Cucumis sativus L.) defense responses and improves fruit quality characteristics under commercial greenhouse conditions. Scientia Horticulturae, 280, 109942. [Google Scholar]
  21. Yamada, K., & Xu, H. L. (2001). Properties and applications of an organic fertilizer inoculated with effective microorganisms. Journal of Crop production, 3(1), 255-268. [Google Scholar]
  22. Keshavarz Zarjani, J., Aliasgharzad, N., Oustan, S., Emadi, M., & Ahmadi, A. (2013). Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Archives of Agronomy and Soil Science, 59(12), 1713-1723. [Google Scholar]
  23. Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in plant science, 8, 141. [Google Scholar]
  24. Lévai, L., Veres, S. Z., Makleit, P., Marozsán, M., & Szabó, B. (2006, February). New trends in plant nutrition. In Proceedings of 41st Croatian and 1st International Symposium on Agriculture (pp. 435-436). [Google Scholar]
  25. Luz, W. C. (2000, October). Plant growth promoting rhizobacteria in graminicolous crops in Brazil. In Fifth International PGPR Workshop (Vol. 29). [Google Scholar]
  26. Madeira, A.C., Ferreira, A., de Varennes, A., and Vieira, M.I. (2003). SPAD Meter Versus Tristimulus Colorimeter to Estimate Chlorophyll Content and Leaf Colour in Sweet Pepper. Communications in Soil Science and Plant Analysis, 34(17-18), 2461-2470. [Google Scholar]
  27. Miskoska-Milevska, E., Najdenovska, O., Popovski, Z., & Dimovska, D. (2018). The influence of the microbiological fertilizer–Slavol on cauliflower growth. Romanian Biotechnological Letters, 2(2), 13511-13516. [Google Scholar]
  28. Molla, A. H., Manjurul Haque, M., Amdadul Haque, M., & Ilias, G. N. M. (2012). Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research, 1, 265-272. [Google Scholar]
  29. Muraleedharan, H., Seshadri, S., & Perumal, K. (2010). Biofertilizer (phosphobacteria). Shri AMM Murugappa Chettiar Research Centre. Taramani, Chennal-600113. [Google Scholar]
  30. Özbay, N., Emrebas, N., and Akinci, S. (2010). Effects of a microbial fertilizer (Trichoderma hertzian, Kuen 1585) on growth and yield of arugula (Eruca vesicaria subsp. sativa) and garden cress (Lepidium sativum) grown in soilless culture. The Journal of Agricultural Faculty of Ege University, Special Issue, 268–274, ISSN 1018-8851. [Google Scholar]
  31. Pal, K. K., Dey, R., Bhatt, D. M., & Chauhan, S. M. (2000, October). Plant growth promoting fluorescent pseudomonads enhanced peanut growth, yield and nutrient uptake. In Proceedings of the Fifth International PGPR Workshop (Vol. 29). [Google Scholar]
  32. Sun, P. F., Fang, W. T., Shin, L. Y., Wei, J. Y., Fu, S. F., & Chou, J. Y. (2014). Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PloS one, 9(12), e114196. [Google Scholar]
  33. Parr, J. F., Hornick, S. B., & Kaufman, D. D. (1994). Use of microbial inoculants and organic fertilizers in agricultural production. [Google Scholar]
  34. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52(1), 347-375. [Google Scholar]
  35. Polat, E., Onus, A. N., and Demir, H. (2004). Atik Mantar Kompostunun Marul Yetiştiriciliğinde Verim ve Kaliteye Etkisi. Akdeniz University Journal of the Faculty of Agriculture, 17(2), 149-154. [Google Scholar]
  36. Prasanna, R., Sood, A., Ratha, S. K., & K. Singh, P. (2014). Cyanobacteria as a “green” option for sustainable agriculture. Cyanobacteria: an economic perspective, 145-166. [Google Scholar]
  37. Rabiei, Z., Hosseini, S. J., Pirdashti, H., & Hazrati, S. (2020). Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress. Heliyon, 6(10). [Google Scholar]
  38. Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. [Google Scholar]
  39. Sindhu, S. S., Parmar, P., Phour, M., & Sehrawat, A. (2016). Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. Potassium solubilizing microorganisms for sustainable agriculture, 171-185. [Google Scholar]
  40. Singh, D., Chand, S., & Anvar, M. (2003). Effect of organic and inorganic amendment on growth and nutrient accumulation by isabgol (Plantago ovata) in sodic soil under greenhouse conditions. [Google Scholar]
  41. Siomos, A. S., Papadopoulou, P. P., Niklis, N. D., & Dogras, C. C. (2000, October). Quality of romaine and leaf lettuce at harvest and during storage. In II Balkan Symposium on Vegetables and Potatoes 579 (pp. 641-646). [Google Scholar]
  42. Sönmez, İ., Kalkan, H., Demir, H., Külcü, R., Yaldiz, O., & Kaplan, M. (2017). Mineral composition and quality parameters of greenhouse-grown lettuce (Lactuca sativa L.) depending on fertilization with agricultural waste composts. Acta Scientiarum Polonorum Hortorum Cultus, 16(3), 85-95. [Google Scholar]
  43. Stojanović, M., Radović, I., Zuza Prastalo, M., Jovanovic, Z., Moravcevic, D., Cvijanović, G., & Savic, S. (2020). The productivity and quality of Lactuca sativa as influenced by microbiological fertilisers and seasonal conditions. Zemdirbyste-Agriculture, 107(4), 345-352. [Google Scholar]
  44. Triveni, S., Prasanna, R., Kumar, A., Bidyarani, N., Singh, R., & Saxena, A. K. (2015). Evaluating the promise of Trichoderma and Anabaena based biofilms as multifunctional agents in Macrophomina phaseolina-infected cotton crop. Biocontrol Science and Technology, 25(6), 656-670. [Google Scholar]
  45. TÜİK 2024. Bitkisel Üretim İstatistikleri, 2023. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2023-49535. [Google Scholar]
  46. Uçok, Z., Demir, H., Sönmez, İ., & Polat, E. (2019). Farklı organik gübre uygulamalarının kıvırcık salatada (Lactuca sativa L. var. crispa) verim, kalite ve bitki besin elementi içeriklerine etkileri. Mediterranean Agricultural Sciences, 32, 63-68. [Google Scholar]
  47. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules, 21(5), 573. [Google Scholar]
  48. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255, 571-586. [Google Scholar]
  49. Wall, L. G. (2000, October). Consequences of an overview on PGPR work in Argentina: The field should be wider. In Fifth International PGPR Workshop (Vol. 29). [Google Scholar]
  50. Wang, G., Ren, Y., Bai, X., Su, Y., & Han, J. (2022). Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants, 11(23), 3200. [Google Scholar]
  51. Wu, F., Wan, J. H. C., Wu, S., & Wong, M. (2012). Effects of earthworms and plant growth–promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. Journal of Plant Nutrition and Soil Science, 175(3), 423-433. [Google Scholar]
  52. Zhao, Y., Zhang, M., Yang, W., Di, H. J., Ma, L., Liu, W., & Li, B. (2019). Effects of microbial inoculants on phosphorus and potassium availability, bacterial community composition, and chili pepper growth in a calcareous soil: a greenhouse study. Journal of Soils and Sediments, 19, 3597-3607. [Google Scholar]
  53. Zhao, Y., Mao, X., Zhang, M., Yang, W., Di, H. J., Ma, L., ... & Li, B. (2021). The application of Bacillus Megaterium alters soil microbial community composition, bioavailability of soil phosphorus and potassium, and cucumber growth in the plastic shed system of North China. Agriculture, Ecosystems & Environment, 307, 107236. [Google Scholar]
  54. Zhou, C., Ma, Z., Zhu, L., Xiao, X., Xie, Y., Zhu, J., & Wang, J. (2016). Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences, 17(6), 976. [Google Scholar]
  55. Zou, C., Li, Z., & Yu, D. (2010). Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology, 48, 460-466. [Google Scholar]