International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(3) 186-199

Identification of Heat Stress-Associated the HSPA1A (HSP70) Gene in Holstein and Turkish Grey Cattle

Sertaç Atalay, Güldan Vapur & Süleyman Kök

pp. 186 - 199   |  DOI: https://doi.org/10.29329/ijiaar.2024.1075.2

Published online: September 30, 2024  |   Number of Views: 3  |  Number of Download: 12


Abstract

Genetic research focuses on breeds that adapt to harsh climatic conditions against the adverse effects of global warming in the livestock industry. Turkish Grey cattle are highly resistant to adverse climatic and natural conditions and against parasitic diseases. The HSPA1A gene encodes the HAPA1A (HSP70) protein, which protects cells against many stress factors. This study investigated polymorphisms in the HSPA1A gene by DNA sequencing in Holstein (n=70) and Turkish Grey Cattle (n=70). The 23 and 21 SNPs were detected in Turkish Grey and Holstein cattle, respectively. The six SNPs were identified in the 3´-UTR region and 18 SNPs in the exonic region (15 synonymous SNPs, 3 non-synonymous SNPs) of the gene. The three non-synonymous SNPs (nsSNP), rs382492082, rs385826597 and rs384294013 lead to Met5Ile, Met5Thr and Gly626Ala substitution, respectively. The effects of nsSNPs on protein structure and function were evaluated using ConSurf, HOPE project, SHIFT and DUET tools. The ConSurf and SHIFT analyses suggest that the amino acid substitutions are likely well-tolerated and have low evolutionary conservation, implying that these changes might not significantly impact the protein's function. In contrast, the HOPE project and DUET analyses indicate potential structural and functional disruptions caused by these mutations. Additionally, haplotype analysis indicates distinct genetic structures between Turkish Grey and Holstein cattle, suggesting diverse evolutionary pressures and historical recombination events. The SNPs identified in this study may guide genetic marker-assisted breeding to improve thermotolerance in domestic and exotic cattle.

Keywords: HSP70, HSPA1A, Thermotolerance, nsSNP, Cattle


How to Cite this Article

APA 6th edition
Atalay, S., Vapur, G. & Kok, S. (2024). Identification of Heat Stress-Associated the HSPA1A (HSP70) Gene in Holstein and Turkish Grey Cattle . International Journal of Innovative Approaches in Agricultural Research, 8(3), 186-199. doi: 10.29329/ijiaar.2024.1075.2

Harvard
Atalay, S., Vapur, G. and Kok, S. (2024). Identification of Heat Stress-Associated the HSPA1A (HSP70) Gene in Holstein and Turkish Grey Cattle . International Journal of Innovative Approaches in Agricultural Research, 8(3), pp. 186-199.

Chicago 16th edition
Atalay, Sertac, Guldan Vapur and Suleyman Kok (2024). "Identification of Heat Stress-Associated the HSPA1A (HSP70) Gene in Holstein and Turkish Grey Cattle ". International Journal of Innovative Approaches in Agricultural Research 8 (3):186-199. doi:10.29329/ijiaar.2024.1075.2.

References
  1. Abbas, Z., Hu, L., Fang, H., Sammad, A., Kang, L., Brito, L. F., . . . Wang, Y. (2020). Association analysis of polymorphisms in the 5′ flanking region of the HSP70 gene with blood biochemical parameters of lactating Holstein cows under heat and cold stress. Animals, 10(11), 2016. [Google Scholar]
  2. Ansari-Mahyari, S., Ojali, M. R., Forutan, M., Riasi, A., & Brito, L. F. (2019). Investigating the genetic architecture of conception and non-return rates in Holstein cattle under heat stress conditions. Tropical Animal Health and Production, 51, 1847-1853. [Google Scholar]
  3. Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic acids research, 38(suppl_2), W529-W533. [Google Scholar]
  4. Atalay, S., & Kök, S. (2023). The Comparison of Polymorphisms in the Heat Shock Transcription Factor 1 Gene of Turkish Grey Cattle and Holstein Cattle. Kafkas Universitesi Veteriner Fakültesi Dergisi, 29(5), 429-435. [Google Scholar]
  5. Badri, T., Alsiddig, M., Lian, L., Cai, Y., & Wang, G. (2021). Single nucleotide polymorphisms in HSP70–1 gene associated with cellular heat tolerance in Chinese Holstein cows. Animal Gene, 20, 200114. [Google Scholar]
  6. Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. [Google Scholar]
  7. Bhat, S., Kumar, P., Kashyap, N., Deshmukh, B., Dige, M. S., Bhushan, B., . . . Singh, G. (2016). Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Veterinary World, 9(2), 113. [Google Scholar]
  8. Cartwright, S. L., McKechnie, M., Schmied, J., Livernois, A. M., & Mallard, B. A. (2021). Effect of in-vitro heat stress challenge on the function of blood mononuclear cells from dairy cattle ranked as high, average and low immune responders. BMC Veterinary Research, 17, 1-11. [Google Scholar]
  9. Dayal, S., Kumar, B., Kumari, R., Kumar, J., Ray, P. K., Chandran, P., & Dey, A. (2024). Molecular Characterization and Seasonal Variation in Expression of HSP70. 1 Gene in Gangatiri Cattle and Its Comparison with Buffalo. Biochemical Genetics, 1-15. [Google Scholar]
  10. El-Tarabany, M. S., & El-Bayoumi, K. M. (2015). Reproductive performance of backcross Holstein× Brown Swiss and their Holstein contemporaries under subtropical environmental conditions. Theriogenology, 83(3), 444-448. [Google Scholar]
  11. Elayadeth-Meethal, M., Tiambo, C. K., Naseef, P. P., Kuruniyan, M. S., & Maloney, S. K. (2023). The profile of HSPA1A gene expression and its association with heat tolerance in crossbred cattle and the tropically adapted dwarf Vechur and Kasaragod. Journal of Thermal Biology, 111, 103426. [Google Scholar]
  12. Felius, M., Koolmees, P. A., Theunissen, B., Consortium, E. C. G. D., & Lenstra, J. A. (2011). On the breeds of cattle—historic and current classifications. Diversity, 3(4), 660-692. [Google Scholar]
  13. Guzmán, L. F., Martínez-Velázquez, G., Villaseñor-González, F., Vega-Murillo, V. E., Palacios-Fránquez, J. A., Ríos-Utrera, Á., & Montaño-Bermúdez, M. (2023). Expression of heat shock protein genes in Simmental cattle exposed to heat stress. Animal bioscience, 36(5), 704. [Google Scholar]
  14. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Paper presented at the Nucleic acids symposium series. [Google Scholar]
  15. Hassan, F.-u., Nawaz, A., Rehman, M. S., Ali, M. A., Dilshad, S. M., & Yang, C. (2019). Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Animal Nutrition, 5(4), 340-350. [Google Scholar]
  16. Hu, L., Ma, Y., Liu, L., Kang, L., Brito, L. F., Wang, D., . . . Xu, Q. (2019). Detection of functional polymorphisms in the hsp70 gene and association with cold stress response in Inner-Mongolia Sanhe cattle. Cell Stress and Chaperones, 24(2), 409-418. [Google Scholar]
  17. Ismaeel, F., Moussa, M., Eltahir, H. A., & Shakam, H. M. (2024). Identification of single nucleotide polymorphisms (SNPs) in 5′ and 3′ untranslated regions (5′ UTR and 3′ UTR) of HSP70 gene in some Western Sudan indigenous cattle. Journal of Advanced Veterinary Research, 14(4), 742-748. [Google Scholar]
  18. Kerekoppa, R. P., Rao, A., Basavaraju, M., Geetha, G. R., Krishnamurthy, L., RAO, T. V. N., . . . Mukund, K. (2015). Molecular characterization of the HSPA1A gene by single-strandconformation polymorphism and sequence analysis in Holstein-Friesiancrossbred and Deoni cattle raised in India. Turkish Journal of Veterinary & Animal Sciences, 39(2), 128-133. [Google Scholar]
  19. Kim, W.-S., Ghassemi Nejad, J., Roh, S.-G., & Lee, H.-G. (2020). Heat-shock proteins gene expression in peripheral blood mononuclear cells as an indicator of heat stress in beef calves. Animals, 10(5), 895. [Google Scholar]
  20. Kök, S. (2017). Comparison of genetic diversity between the ex-situ conservation herd and smallholders of Turkish grey cattle. Pakistan Journal of Zoology, 49(4). [Google Scholar]
  21. Kök, S., Atalay, S., Eken, H. S., & Savasci, M. (2017). The genetic characterization of Turkish grey cattle with regard to UoG Cast, CAPN1 316 and CAPN1 4751 markers. Pakistan Journal of Zoology, 49(1). [Google Scholar]
  22. Kumar, A. V., & Lapierre, L. R. (2021). Location, location, location: subcellular protein partitioning in proteostasis and aging. Biophysical Reviews, 13(6), 931-941. [Google Scholar]
  23. Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N. W., Garner, J., Wales, W., . . . Rochfort, S. (2017). Heat stress in dairy cattle alters lipid composition of milk. Scientific reports, 7(1), 961. [Google Scholar]
  24. McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R., Thormann, A., . . . Cunningham, F. (2016). The ensembl variant effect predictor. Genome biology, 17, 1-14. [Google Scholar]
  25. Onasanya, G. O., Msalya, G. M., Thiruvenkadan, A. K., Sreekumar, C., Tirumurugaan, G. K., Fafiolu, A. O., . . . Okpeku, M. (2021). Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four zebu breeds of Nigeria. Frontiers in Genetics, 12, 642213. [Google Scholar]
  26. Pariset, L., Mariotti, M., Nardone, A., Soysal, M. I., Ozkan, E., Williams, J., . . . Bodò, I. (2010). Relationships between Podolic cattle breeds assessed by single nucleotide polymorphisms (SNPs) genotyping. Journal of Animal Breeding and Genetics, 127(6), 481-488. [Google Scholar]
  27. Paula-Lopes, F., Lima, R. S. d., Satrapa, R. A., & Barros, C. M. (2013). Physiology and endocrinology symposium: Influence of cattle genotype (Bos indicus vs. Bos taurus) on oocyte and preimplantation embryo resistance to increased temperature. Journal of Animal Science, 91(3), 1143-1153. [Google Scholar]
  28. Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic acids research, 42(W1), W314-W319. [Google Scholar]
  29. Saeed, A., Wajid, A., Abbas, K., Ayub, G., Din, A. M., Ain, Q., . . . Hussain, T. (2021). Novel polymorphisms in complete coding region of heat shock protein 70.1 gene in subtropically adapted red sindhi cattle breed. [Google Scholar]
  30. Santana, M., Bignardi, A., Pereira, R., Stefani, G., & El Faro, L. (2017). Genetics of heat tolerance for milk yield and quality in Holsteins. Animal, 11(1), 4-14. [Google Scholar]
  31. Soysal, M., & Kök, S. (2006). The last survivors of Grey cattle resisting extinction. A case study of characteristics and sustainability of traditional systems of native Grey cattle breeds. Options Méditerranéenes A, 78, 55-63. [Google Scholar]
  32. Stamperna, K., Giannoulis, T., Dovolou, E., Kalemkeridou, M., Nanas, I., Dadouli, K., . . . Amiridis, G. S. (2021). Heat Shock Protein 70 improves in vitro embryo yield and quality from heat stressed bovine oocytes. Animals, 11(6), 1794. [Google Scholar]
  33. Suhendro, I., Noor, R. R., Jakaria, J., Priyanto, R., Manalu, W., & Andersson, G. (2024). Association of heat-shock protein 70.1 gene with physiological and physical performance of Bali cattle. Veterinary World, 17(1), 17. [Google Scholar]
  34. Summer, A., Lora, I., Formaggioni, P., & Gottardo, F. (2019). Impact of heat stress on milk and meat production. Animal Frontiers, 9(1), 39-46. [Google Scholar]
  35. Taborda-Charris, J. C., Rodríguez-Hernández, R., Herrera-Sánchez, M. P., Uribe-García, H. F., Otero-Arroyo, R. J., Naranjo-Gomez, J. S., . . . Rondón-Barragán, I. S. (2023). Expression profiling of heat shock protein genes in whole blood of Romosinuano cattle breed. Veterinary World, 16(3), 601. [Google Scholar]
  36. Tesema, Z., Taye, M., & Ayichew, D. (2019). The role of phenotypic and genetic basis of livestock selection for climate change adaptation and mitigation: A review. J Appl Adv Res, 4(2), 66-77. [Google Scholar]
  37. UniProt Consortium, T. (2018). UniProt: the universal protein knowledgebase. Nucleic acids research, 46(5), 2699-2699. [Google Scholar]
  38. Varadi, M., Bertoni, D., Magana, P., Paramval, U., Pidruchna, I., Radhakrishnan, M., . . . Yeo, J. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic acids research, 52(D1), D368-D375. [Google Scholar]
  39. Velayudhan, S. M., Brügemann, K., Alam, S., Yin, T., Devaraj, C., Sejian, V., . . . König, S. (2022). Molecular, physiological and hematological responses of crossbred dairy cattle in a tropical savanna climate. Biology, 12(1), 26. [Google Scholar]
  40. Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC bioinformatics, 11, 1-10. [Google Scholar]
  41. Wang, L., Yan, X., Wu, H., Wang, F., Zhong, Z., Zheng, G., . . . Na, W. (2024). Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals, 14(5), 775. [Google Scholar]
  42. Xu, L., Bickhart, D. M., Cole, J. B., Schroeder, S. G., Song, J., Tassell, C. P. V., . . . Liu, G. E. (2015). Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Molecular biology and evolution, 32(3), 711-725. [Google Scholar]