International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(3) 244-262

Optimizing Heat Treatment for Quality Enhancement of Canned Pea Sauce Dishes

Hedi Abdelaali, Mounir Jebali, Wafa Hajji, Rachid Selmi, Mourad Ben Said, Walid Oueslati, Sihem Bellagha & Ines Essid

pp. 244 - 262   |  DOI: https://doi.org/10.29329/ijiaar.2024.1075.6

Published online: September 30, 2024  |   Number of Views: 24  |  Number of Download: 63


Abstract

As lifestyles continue to evolve, the demand for canned foods, particularly in collective catering, has seen a notable surge. Traditional recipes, including the beloved Tunisian dish of pea sauce, are increasingly sought in canned formats. This study aimed to develop a canned pea sauce recipe and optimize its sterilization parameters. The formulation of the pea sauce involved considerations of factors influencing sensory quality, such as the pre-cooking time of the meat, the amount of tomato paste, and the spice mixture. To assess the sterilization process, two scales were tested: scale 1 (115°C for 60 min) and scale 2 (115°C for 45 min). Stability tests were carried out, and sterilization values were determined using the Biglow method. Various parameters, including pH, peroxide index, total volatile basic nitrogen (TVBN), and titrable acid values, were determined in conjunction with sensory evaluation comparing the final product under both thermal scales.The optimal recipe parameters were identified as a pre-cooking time of 6 minutes, 14 grams of tomato paste, and 7.60 grams of the spice mixture. Both the two scales were validated, yielding sterilizing values of 9.9 min and 8.3 min for scale 1 and scale 2, respectively. Stability tests of the optimized canned pea sauce showed satisfactory results for the two thermal scales. However, scale 2 exhibited slight improvements in pH, peroxide index, TVBN, titratable acidity, and various organoleptic parameters compared to scale 1.These findings contribute to the formulation of an optimized canned pea sauce recipe with enhanced stability and sensory attributes, addressing the increasing need for convenient food options in contemporary lifestyles, particularly in shared catering environments.

Keywords: Canned Pea Sauce, Quality, Sterilization, Stability, Traditional Recipes


How to Cite this Article

APA 6th edition
Abdelaali, H., Jebali, M., Hajji, W., Selmi, R., Said, M.B., Oueslati, W., Bellagha, S. & Essid, I. (2024). Optimizing Heat Treatment for Quality Enhancement of Canned Pea Sauce Dishes . International Journal of Innovative Approaches in Agricultural Research, 8(3), 244-262. doi: 10.29329/ijiaar.2024.1075.6

Harvard
Abdelaali, H., Jebali, M., Hajji, W., Selmi, R., Said, M., Oueslati, W., Bellagha, S. and Essid, I. (2024). Optimizing Heat Treatment for Quality Enhancement of Canned Pea Sauce Dishes . International Journal of Innovative Approaches in Agricultural Research, 8(3), pp. 244-262.

Chicago 16th edition
Abdelaali, Hedi, Mounir Jebali, Wafa Hajji, Rachid Selmi, Mourad Ben Said, Walid Oueslati, Sihem Bellagha and Ines Essid (2024). "Optimizing Heat Treatment for Quality Enhancement of Canned Pea Sauce Dishes ". International Journal of Innovative Approaches in Agricultural Research 8 (3):244-262. doi:10.29329/ijiaar.2024.1075.6.

References
  1. Abdelaali, H., Hajji, W., Selmi, R., Mallek, H., Ben Khalifa, I., Bellagha, S., . . . Essid, I. (2024). Assessing the Physiochemical and Sensorial Quality of Pea Sauce Canned in Plastic Trays vs. Metal Cans. Processes, 12(8), 1657. [Google Scholar]
  2. Ahmed, M. (2021). Physico-chemical, microbiological and organoleptic assessment for the stored frozen products of tuna. JAFE, 2(1), 6-11. [Google Scholar]
  3. Ajide, M. T., & English, N. J. (2023). Effect of temperature on the dipole response, structural and dynamical properties of water under external electric fields. Journal of Molecular Liquids, 389, 122675. [Google Scholar]
  4. Amaral, A. B., Silva, M. V. d., & Lannes, S. C. D. S. (2018). Lipid oxidation in meat: mechanisms and protective factors–a review. J Food Sci Technol, 38, 1-15. [Google Scholar]
  5. Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur, 6, 1-22. [Google Scholar]
  6. Angelidi, A. M., Kokkinos, A., Katechaki, E., Ros, E., & Mantzoros, C. S. (2021). Mediterranean diet as a nutritional approach for COVID-19. Metab.: Clin. Exp, 114, 154407. [Google Scholar]
  7. Bakshi, R. A., Aslam, A., Khan, Z. S., Fayaz, S., & Dar, B. (2022). Physiochemical, sensorial, and rheological characteristics of sauce developed from Kashmiri apples: Influence of cultivars and storage conditions. JFNS, 10(6), 1685-1693. [Google Scholar]
  8. Bazana, L. C., Carvalho, Â. R., Mace, M., & Fuentefria, A. M. (2022). The influence of the microwave oven on the production of solid culture medium and quality of microbial growth. An Acad Bras Cienc, 94, e20211104. [Google Scholar]
  9. Bekhit, A. E.-D. A., Holman, B. W., Giteru, S. G., & Hopkins, D. L. (2021). Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol, 109, 280-302. [Google Scholar]
  10. Boix, E., Coroller, L., Couvert, O., Planchon, S., van Vliet, A. H., Brunt, J., . . . Popoff, M. R. (2022). Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment. Food Microbiol, 106, 104055. [Google Scholar]
  11. Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Appl. Sci., 12(4), 2202. [Google Scholar]
  12. Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429. Retrieved from https://mdpi-res.com/d_attachment/antioxidants/antioxidants-08-00429/article_deploy/antioxidants-08-00429.pdf?version=1569401571 [Google Scholar]
  13. Dornoush, J., & Bagher, H. S. M. (2022). Ohmic heating application in food processing: Recent achievements and perspectives. Foods Raw Mater. , 10(2), 216-223. [Google Scholar]
  14. EC1022. (2008). 17 October 2008 amending Regulation (EC) No 2074/2005 as regards the total volatile basic nitrogen (TVB-N) limits. Off. J. Eur. Union 2008, 52, 86–88. In. [Google Scholar]
  15. EC2074. (2005). 5 December 2005. laying down implementing measures for certain products under Regulation (EC) No 853/2004 of the European Parliament and of the Council and for the organisation of official controls under Regulations (EC) No 854/2004 and (EC) No 882/2004, derogating from Regulation (EC) No 852/2004 and amending Regulations (EC) No 853/2004 and (EC) No 854/2004. In. [Google Scholar]
  16. EC2568. (1991). of July 11, 1991 C1 on the characteristics of olive oils and olive-pomace oils and on the relevant methods of analysis (OJ L 248, 5.9.1991, p.1). In. [Google Scholar]
  17. ElShehawy, S. M., & Farag, Z. S. (2019). Safety assessment of some imported canned fish using chemical, microbiological and sensory methods. Egypt. J. Aquat. Res, 45(4), 389-394. [Google Scholar]
  18. Gavahian, M., Tiwari, B. K., Chu, Y.-H., Ting, Y., & Farahnaky, A. (2019). Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci. Technol, 86, 328-339. [Google Scholar]
  19. Giannakourou, M. C., Saltaouras, K. P., & Stoforos, N. G. (2021). On optimum dynamic temperature profiles for thermal inactivation kinetics determination. Journal of Food Science, 86(6), 2172-2193. [Google Scholar]
  20. Gómez-Limia, L., Carballo, J., Rodríguez-González, M., & Martínez, S. (2022). Impact of the filling medium on the colour and sensory characteristics of canned European eels (Anguilla anguilla L.). Foods, 11(8), 1115. Retrieved from https://mdpi-res.com/d_attachment/foods/foods-11-01115/article_deploy/foods-11-01115-v2.pdf?version=1650011651 [Google Scholar]
  21. González Sandoval, D. C., Luna Sosa, B., Martínez-Ávila, G. C. G., Rodríguez Fuentes, H., Avendaño Abarca, V. H., & Rojas, R. (2019). Formulation and characterization of edible films based on organic mucilage from Mexican Opuntia ficus-indica. Coatings, 9(8), 506. [Google Scholar]
  22. Han, J.-R., Yan, J.-N., Sun, S.-G., Tang, Y., Shang, W.-H., Li, A.-T., . . . Zhu, B.-W. (2018). Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products. Food Chemistry, 261, 337-347. [Google Scholar]
  23. Haouet, M. N., Tommasino, M., Mercuri, M. L., Benedetti, F., Di Bella, S., Framboas, M., . . . Altissimi, M. S. (2018). Experimental accelerated shelf life determination of a ready-to-eat processed food. Ital. J. Food Saf., 7(4), 6919. [Google Scholar]
  24. ISO4120. (2021). Sensory analysis - Methodology - Triangular test. In. [Google Scholar]
  25. Jackson, V., & Penumetcha, M. (2019). Dietary oxidised lipids, health consequences and novel food technologies that thwart food lipid oxidation: an update. Ital. J. Food Saf., 54(6), 1981-1988. [Google Scholar]
  26. Jarosz, A., Grenda, T., Goldsztejn, M., Kozak, B., & Kwiatek, K. (2022). Potential risk of botulinum neurotoxin-producing clostridia occurrence in canned fish. J. Vet. Res, 66(4), 605-611. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945006/pdf/jvetres-66-605.pdf [Google Scholar]
  27. Khalid, W., Maggiolino, A., Kour, J., Arshad, M. S., Aslam, N., Afzal, M. F., . . . Korma, S. A. (2023). Dynamic alterations in protein, sensory, chemical, and oxidative properties occurring in meat during thermal and non-thermal processing techniques: A comprehensive review. Front. nutr., 9, 1057457. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876618/pdf/fnut-09-1057457.pdf [Google Scholar]
  28. Leitzen, S., Vogel, M., Steffens, M., Zapf, T., Müller, C. E., & Brandl, M. (2021). Quantification of degradation products formed during heat sterilization of glucose solutions by LC-MS/MS: impact of autoclaving temperature and duration on degradation. Pharmaceuticals, 14(11), 1121. Retrieved from https://mdpi-res.com/d_attachment/pharmaceuticals/pharmaceuticals-14-01121/article_deploy/pharmaceuticals-14-01121-v2.pdf?version=1635997811 [Google Scholar]
  29. Liu, X., Xia, B., Hu, L. T., Ni, Z. J., Thakur, K., & Wei, Z. J. (2020). Maillard conjugates and their potential in food and nutritional industries: A review. Food frontiers, 1(4), 382-397. [Google Scholar]
  30. Mansour, H., Majeed, K., & Al-Temimi, W. (2023). Determination of the optimal time for the heat treatment time of local canned river and marine fish products in Basra Governorate, knowledge of microbial analysis and sensory evaluation. TJABS., 12, 10-21. [Google Scholar]
  31. Mardatillah, A. (2020). The enterprise culture heritage of Minangkabau cuisine, West Sumatra of Indonesia as a source of sustainable competitive advantage. J. Ethn. Foods. , 7(1), 34. [Google Scholar]
  32. Martin, D., Joly, C., Dupas-Farrugia, C., Adt, I., Oulahal, N., & Degraeve, P. (2023). Volatilome Analysis and Evolution in the Headspace of Packed Refrigerated Fish. Foods, 12(14), 2657. Retrieved from https://mdpi-res.com/d_attachment/foods/foods-12-02657/article_deploy/foods-12-02657.pdf?version=1688982578 [Google Scholar]
  33. Munir, M. T., Mtimet, N., Guillier, L., Meurens, F., Fravalo, P., Federighi, M., & Kooh, P. (2023). Physical treatments to control Clostridium botulinum hazards in food. Foods, 12(8), 1580. [Google Scholar]
  34. NFV05-101. (1974). French standard for determining the titratable acidity of products derived from fruit and vegetables. In. [Google Scholar]
  35. NFV08-408. (1997). October 1997, p. 1-12, Microbiology of foodstuffs. Stability control of appertised and similar products. In. [Google Scholar]
  36. NFV08-409. (1997). October 1997, Microbiology of foodstuffs - Determination of the pH of sterilised and similar products. In. [Google Scholar]
  37. NT118.22. (2002). Registered Tunisian standard relating to fats of animal and vegetable origin for the determination of the peroxide value. In. [Google Scholar]
  38. Rabadán, A., Triguero, Á., & Gonzalez-Moreno, Á. (2020). Cooperation as the secret ingredient in the recipe to foster internal technological eco-innovation in the agri-food industry. IJERPH, 17(7), 2588. Retrieved from https://mdpi-res.com/d_attachment/ijerph/ijerph-17-02588/article_deploy/ijerph-17-02588.pdf?version=1586497707 [Google Scholar]
  39. Ramos, S., Millan, D., Ortiz, L., Alonso, D., & la Torre, G. (2018). Effect of high-pressure thermal sterilization on the inactivation of Geobacillus stearothemophilus spores in ready to eat meals. Int. J. Eng. Sci., 7(8), 65-74. [Google Scholar]
  40. Scutarașu, E. C., & Trincă, L. C. (2023). Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods, 12(18), 3340. [Google Scholar]
  41. Shakoor, A., Zhang, C., Xie, J., & Yang, X. (2022). Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chemistry, 393, 133416. [Google Scholar]
  42. Singh, H., & Ramaswamy, H. S. (2023). Thermal Processing of Acidified Vegetables: Effect on Process Time-Temperature, Color and Texture. Processes, 11(4), 1272. [Google Scholar]
  43. Soni, A., Bremer, P., & Brightwell, G. (2022). A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens—A Challenge for Thermal Validation Trials. Foods, 11(24), 4117. Retrieved from https://mdpi-res.com/d_attachment/foods/foods-11-04117/article_deploy/foods-11-04117-v3.pdf?version=1671702705 [Google Scholar]
  44. Tadini, C. C., & Gut, J. A. (2022). The importance of heating unit operations in the food industry to obtain safe and high-quality products. Front. nutr., 9, 853638. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9094675/pdf/fnut-09-853638.pdf [Google Scholar]
  45. Tola, Y. B., & Ramaswamy, H. S. (2018). Novel processing methods: updates on acidified vegetables thermal processing. Curr. Opin. Food Sci, 23, 64-69. [Google Scholar]
  46. Wang, W., Wu, J., Zheng, J., Wu, Z., Huang, J., Lu, Y., . . . Huang, L. (2023). Simulation and optimization of the thermal sterilization process of puree cans using the production of chestnut puree as an example. Front. microbiol., 14, 1135700. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166203/pdf/fmicb-14-1135700.pdf [Google Scholar]
  47. Zhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., . . . Yu, X. (2021). Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chemistry, 358, 129834. [Google Scholar]