International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2024, Vol. 8(3) 230-243

Genetic Evaluation of Tunisian Honeybees for In-Hives and Broods’ Temperature and Relative Humidity: Critical Traits for Tolerance to Climate Changes

Nour Elhouda Bakrı, Kaled Bouchoucha, Walid Nagara & M'Naouer Djemali̇

pp. 230 - 243   |  DOI: https://doi.org/10.29329/ijiaar.2024.1075.5

Published online: September 30, 2024  |   Number of Views: 5  |  Number of Download: 27


Abstract

Honeybee colonies are essential for global food security and genetic diversity due to their critical role in pollination. Within a colony, honeybees engage in activities like honey production and maintaining hive conditions, which are vital for the colony's health and productivity. This study aimed to deepen our understanding in three key areas: (1) The ability of honeybees in the southern Mediterranean to regulate hive and brood conditions, (2) Estimation of genetic parameters for hive Temperature and Relative Humidity, and (3) Prediction of Breeding Values (PBVs) for honeybee colonies. Data on Temperature and Relative Humidity were collected from sensors placed inside hives and at the brood level over a three-year period (2021-2023). The study analyzed 22,364 records of in-hive Temperature and Relative Humidity from 118 sensors, along with 1,664 brood-level humidity records from 14 sensors. PBVs were predicted using a BLUP Animal model. The results showed that monthly variations significantly influenced both Temperature and Relative Humidity within the hives. Heritability estimates were 0.21 for in-hive temperature, 0.33 for in-hive relative humidity, and 0.22 for brood relative humidity. A high genetic correlation (0.65) between Temperature and Relative Humidity within the hives suggests shared genetic and physiological mechanisms for these traits. The study also found that 77% of in-hive Temperature records and 48% of Relative Humidity records fell within optimal ranges, indicating that many Tunisian bees effectively regulate their hive environment. Based on PBVs, 24 colonies were selected for their superior adaptation to environmental conditions. This research underscores the importance of connected beehives and their impact on honeybee management and selection. Understanding genetic parameters and trait relationships aids in improving the long-term success and productivity of honeybee populations.

Keywords: Honeybees, Food security, Genetic, Temperature, Relative Humidity


How to Cite this Article

APA 6th edition
Bakri, N.E., Bouchoucha, K., Nagara, W. & Djemali̇, M. (2024). Genetic Evaluation of Tunisian Honeybees for In-Hives and Broods’ Temperature and Relative Humidity: Critical Traits for Tolerance to Climate Changes . International Journal of Innovative Approaches in Agricultural Research, 8(3), 230-243. doi: 10.29329/ijiaar.2024.1075.5

Harvard
Bakri, N., Bouchoucha, K., Nagara, W. and Djemali̇, M. (2024). Genetic Evaluation of Tunisian Honeybees for In-Hives and Broods’ Temperature and Relative Humidity: Critical Traits for Tolerance to Climate Changes . International Journal of Innovative Approaches in Agricultural Research, 8(3), pp. 230-243.

Chicago 16th edition
Bakri, Nour Elhouda, Kaled Bouchoucha, Walid Nagara and M'Naouer Djemali̇ (2024). "Genetic Evaluation of Tunisian Honeybees for In-Hives and Broods’ Temperature and Relative Humidity: Critical Traits for Tolerance to Climate Changes ". International Journal of Innovative Approaches in Agricultural Research 8 (3):230-243. doi:10.29329/ijiaar.2024.1075.5.

References
  1. Abou-Shaara, H. F., Al-Ghamdi, A. A., & Mohamed, A. A. (2013). Honey bee colonies performance enhance by newly modified beehives. Journal of Apicultural Science, 57(2), 45‑57. https://doi.org/10.2478/jas-2013-0016 [Google Scholar] [Crossref] 
  2. Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y., & Basuny, N. K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64(4), 455‑463. https://doi.org/10.1007/s00040-017-0573-8 [Google Scholar] [Crossref] 
  3. Aupinel, P., Fortini, D., Dufour, H., Tasei, J.-N., Michaud, B., Odoux, F., & Pham-Delègue, M.-H. (2005). Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. [Google Scholar]
  4. Blažytė-Čereškienė, L., Vaitkevičienė, G., Venskutonytė, S., & Būda, V. (2010). Honey bee foraging in spring oilseed rape crops under high ambient temperature conditions. 97(1). [Google Scholar]
  5. Boldman, K. G., Kriese, L. A., Van Vleck, L. D., Van Tassell, C. P., & Kachman, S. D. (1995). A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances. Agricultural Research Service: Washington. DC. USA. https://data.nal.usda.gov/dataset/mtdfremlmultiple-trait-deriv ative-free-restricted-maximum-likelihood [Google Scholar]
  6. BootstrapBee. (2021). The optimal temperature for splitting hives: Inside and outside. Retrrieved from: https://bootstrapbee.com/management/the-optimal-temperature-for-splitting-hives-inside-outside [Google Scholar]
  7. Borges, F. V. B., & Blochtein, B. (2006). Variação sazonal das condições internas de colônias de Melipona marginata obscurior Moure, no Rio Grande do Sul, Brasil. Revista Brasileira de Zoologia, 23(3), 711‑715. https://doi.org/10.1590/S0101-81752006000300015 [Google Scholar] [Crossref] 
  8. DeGrandi-Hoffman, G., Spivak, M., & Martin, J. (1993). The influence of temperature on cuticular color of honeybee (Apis mellifera L) queens. Apidologie, 24(2), 101‑105. https://doi.org/10.1051/apido:19930203 [Google Scholar] [Crossref] 
  9. Djemali̇, M., Bouchoucha, K., & Ngara, W. (2022). The Effect of Months of the Year, Recorded by a Smart Bee Device, on the Temperature and Relative Humidity of Beehives and Broods. International Journal of Innovative Approaches in Agricultural Research, 6(3), 230‑238. https://doi.org/10.29329/ijiaar.2022.475.6 [Google Scholar] [Crossref] 
  10. Doull, K. M. (1976). The effects of different humidities on the hatching of the eggs of honeybees. Apidologie, 7(1), 61‑66. https://doi.org/10.1051/apido:19760104 [Google Scholar] [Crossref] 
  11. Ellis, M. B., Nicolson, S. W., Crewe, R. M., & Dietemann, V. (2008). Hygropreference and brood care in the honeybee (Apis mellifera). Journal of Insect Physiology, 54(12), 1516‑1521. https://doi.org/10.1016/j.jinsphys.2008.08.011 [Google Scholar] [Crossref] 
  12. Eouzan, I., Garnery, L., Pinto, M. A., Delalande, D., Neves, C. J., Fabre, F., Lesobre, J., Houte, S., Estonba, A., Montes, I., Sime-Ngando, T., & Biron, D. G. (2019). Hygroregulation, a key ability for eusocial insects : Native Western European honeybees as a case study. PLOS ONE, 14(2), e0200048. https://doi.org/10.1371/journal.pone.0200048 [Google Scholar] [Crossref] 
  13. Free, J. B., & Spencer-Booth, Y. (1960). Chill-coma and cold death temperatures of apis mellifera. Entomologia Experimentalis et Applicata, 3(3), 222‑230. https://doi.org/10.1111/j.1570-7458.1960.tb00451.x [Google Scholar] [Crossref] 
  14. Groh, C., Tautz, J., & Rössler, W. (2004). Synaptic organization in the adult honey bee brain is influenced by brood-temperature control during pupal development. Proceedings of the National Academy of Sciences, 101(12), 4268‑4273. https://doi.org/10.1073/pnas.0400773101 [Google Scholar] [Crossref] 
  15. Hemeida, B., Al-Rajhi, M., & El-Ashhab, A. (2015). Effect of the internal size and thermal insulation of the hive on bee colonies stringth and productivity. Journal of Soil Sciences and Agricultural Engineering, 6(1), 117‑127. https://doi.org/10.21608/jssae.2015.41813 [Google Scholar] [Crossref] 
  16. Henderson, C. R. (1976). A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics, 32(1), 69. https://doi.org/10.2307/2529339 [Google Scholar] [Crossref] 
  17. Human, H., Nicolson, S. W., & Dietemann, V. (2006). Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften, 93(8), 397‑401. https://doi.org/10.1007/s00114-006-0117-y [Google Scholar] [Crossref] 
  18. Jarimi, H., Tapia-Brito, E., & Riffat, S. (2020). A Review on Thermoregulation Techniques in Honey Bees’ (Apis Mellifera) Beehive Microclimate and Its Similarities to the Heating and Cooling Management in Buildings. Future Cities and Environment, 6(1), 7. https://doi.org/10.5334/fce.81 [Google Scholar] [Crossref] 
  19. Jones, J. C., & Oldroyd, B. P. (2006). Nest Thermoregulation in Social Insects. In Advances in Insect Physiology (Vol. 33, p. 153‑191). Elsevier. https://doi.org/10.1016/S0065-2806(06)33003-2 [Google Scholar] [Crossref] 
  20. Joshi, N. C., & Joshi, P. C. (2010). Foraging Behaviour of Apis Spp. On Apple Flowers in a Subtropical Environment. [Google Scholar]
  21. Kaftanoglu, O., Linksvayer, T. A., & Page, R. E. (2011). Rearing Honey Bees, Apis mellifera, in vitro 1 : Effects of Sugar Concentrations on Survival and Development. Journal of Insect Science, 11(96), 1‑10. https://doi.org/10.1673/031.011.9601 [Google Scholar] [Crossref] 
  22. Ken, T., Bock, F., Fuchs, S., Streit, S., Brockmann, A., Tautz, J. (2005). Effects of brood temperature on heney bee Apis mellifera wing morphology. Acta Aool Sin 51:768-771 [Google Scholar]
  23. Kraus, B., & Velthuis, H. H. W. (1997). High Humidity in the Honey Bee (Apis mellifera L.) Brood Nest Limits Reproduction of the Parasitic Mite Varroa jacobsoni Oud. Naturwissenschaften, 84(5), 217‑218. https://doi.org/10.1007/s001140050382 [Google Scholar] [Crossref] 
  24. Kühnholz, S., & Seeley, T. D. (1997). The control of water collection in honey bee colonies. Behavioral Ecology and Sociobiology, 41(6), 407‑422. https://doi.org/10.1007/s002650050402 [Google Scholar] [Crossref] 
  25. Lensky, Y. (1964). L'économie de liquides chez les abeilles aux températures élevées. Insectes Sociaux, 11, 207-222. [Google Scholar]
  26. Petz, M., Stabentheiner, A., & Crailsheim, K. (2004). Respiration of individual honeybee larvae in relation to age and ambient temperature. Journal of Comparative Physiology B. https://doi.org/10.1007/s00360-004-0439-z [Google Scholar] [Crossref] 
  27. Seeley, T. D. (1974). Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. Journal of Insect Physiology, 20(11), 2301‑2305. https://doi.org/10.1016/0022-1910(74)90052-3 [Google Scholar] [Crossref] 
  28. Silva, I. C., Message, D., Cruz, C. D., Campos, L. A. O., & Sousa-Majer, M. J. (2009). Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions. Genetics and Molecular Research, 8(2), 623‑629. https://doi.org/10.4238/vol8-2kerr018 [Google Scholar] [Crossref] 
  29. Southwick, E. E., & Moritz, R. F. (1987). Social control of air ventilation in colonies of honey bees, Apis mellifera. Journal of insect physiology, 33(9), 623-626. [Google Scholar]
  30. Stabentheiner, A., Pressl, H., Papst, T., Hrassnigg, N., & Crailsheim, K. (2003). Endothermic heat production in honeybee winter clusters. Journal of Experimental Biology, 206(2), 353‑358. https://doi.org/10.1242/jeb.00082 [Google Scholar] [Crossref] 
  31. Statistical Analysis System (SAS) Institute (2002) SAS/STAT User's Guide. Version 8, 6th Edition, SAS Institute, Cary, USA 112 [Google Scholar]
  32. Sudarsan, R., Thompson, C., Kevan, P. G., & Eberl, H. J. (2012). Flow currents and ventilation in Langstroth beehives due to brood thermoregulation efforts of honeybees. Journal of Theoretical Biology, 295, 168‑193. https://doi.org/10.1016/j.jtbi.2011.11.007 [Google Scholar] [Crossref] 
  33. Tautz, J., Maier, S., Groh, C., Rössler, W., & Brockmann, A. (2003). Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proceedings of the National Academy of Sciences, 100(12), 7343‑7347. https://doi.org/10.1073/pnas.1232346100 [Google Scholar] [Crossref] 
  34. Woodrow, A. W. (1935). Some Effects of Relative Humidity on the Length of Life and Food Consumption of Honeybees. Journal of Economic Entomology, 28(3), 565‑568. https://doi.org/10.1093/jee/28.3.565 [Google Scholar] [Crossref]