International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(2) 208-219

Development and Validation of Analytical Methods for Quantification of L-Dopa; Application to Plant Materials

Erten Akbel & İbrahim Bulduk

pp. 208 - 219   |  DOI: https://doi.org/10.29329/ijiaar.2023.568.5

Published online: June 29, 2023  |   Number of Views: 69  |  Number of Download: 294


Abstract

An essential neurotransmitter used to treat nervous system dysfunction like Parkinson's disease is L-dopa. The amount of L-dopa in plant materials has been measured in this study using chromatographic and spectrophotometric methods that are user-friendly, straightforward, quick, and affordable. Utilizing conventional instrumental parameters, high-performance liquid chromatography and spectrophotometry methods were established. In accordance with ICH guidelines, these analytical methods were validated for linearity, accuracy, precision, and robustness. The chromatographic procedure made use of an Agilent Extend C18 (250×4.6 mm, 5 µm) column. 0.1% trifloroacetic acid solution and acetonitrile (92/8, v/v) were used as mobile phase. It was run in isocrotic mode and the flow rate was 1 mL min-1. The retention time of L-dopa was determined as 3.85 minutes. L-dopa was identified using the spectrophotometric method, which involved measuring the solutions' absorbance at a wavelength of 280 nm. In spectrophotometric analysis, ultra-pure water as a solvent gave sufficient molar absorptivity at a λmax of 280 nm. The results showed that spectrophotometric and chromatographic methods were linear, accurate, precise, robust, and the percent recovery was within standard limits. No statistically significant distinction existed between the methods within the 95% confidence interval (p<0.05). The developed methods can be used to quantify L-dopa in plant materials for routine analysis and have been found to be very efficient.

Keywords: L-Dopa, Quantification, Chromatography, Spectrophotometry, Validation


How to Cite this Article

APA 6th edition
Akbel, E. & Bulduk, I. (2023). Development and Validation of Analytical Methods for Quantification of L-Dopa; Application to Plant Materials . International Journal of Innovative Approaches in Agricultural Research, 7(2), 208-219. doi: 10.29329/ijiaar.2023.568.5

Harvard
Akbel, E. and Bulduk, I. (2023). Development and Validation of Analytical Methods for Quantification of L-Dopa; Application to Plant Materials . International Journal of Innovative Approaches in Agricultural Research, 7(2), pp. 208-219.

Chicago 16th edition
Akbel, Erten and Ibrahim Bulduk (2023). "Development and Validation of Analytical Methods for Quantification of L-Dopa; Application to Plant Materials ". International Journal of Innovative Approaches in Agricultural Research 7 (2):208-219. doi:10.29329/ijiaar.2023.568.5.

References
  1. Abdel-Sattar, E., Mahrous, E. A., Thabet, M. M., Elnaggar, D. M. Y., Youssef, A. M., Elhawary, R., ... & Mekky, R. H. (2021). Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC genomics, 9(1), 1-11. [Google Scholar]
  2. Arvand, M., Abbasnejad, S., & Ghodsi, N. (2016). Graphene quantum dots decorated with Fe 3 O 4 nanoparticles/functionalized multiwalled carbon nanotubes as a new sensing platform for electrochemical determination of l-DOPA in agricultural products. Analytical Methods, 8(29), 5861-5868.   [Google Scholar]
  3. Aware, C., Patil, R., Gaikwad, S., Yadav, S., Bapat, V., & Jadhav, J. (2017).  Evaluation of L-dopa, proximate composition with in vitro anti-inflammatory and antioxidant activity of Mucuna macrocarpa beans: A future drug for Parkinson treatment. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1097-1106. [Google Scholar]
  4. Balestrino, R., & Schapira, A. H. V. (2020). Parkinson disease. European journal of neurology, 27(1), 27-42.  [Google Scholar]
  5. Baranowska, I., & Płonka, J. (2015). Simultaneous determination of biogenic amines and methylxanthines in foodstuff—sample preparation with HPLC-DAD-FL analysis. Food Analytical Methods, 8(4), 963-972. [Google Scholar]
  6. Bulduk, I., &  Topal, N. (2020). Simultaneous determination of biogenic amines and methylxanthines in foodstuff—sample preparation with HPLC-DAD-FL analysis. Food Analytical Methods, 8(4), 963-972. [Google Scholar]
  7. Chen, X., Zhang, J., Zhai, H., Chen, X., & Hu, Z. (2005). Determination of levodopa by capillary zone electrophoresis using an acidic phosphate buffer and its application in the analysis of beans. Food chemistry, 92(2), 381-386.     8(4), 963-972. [Google Scholar]
  8. Dhanani, T., Singh, R., Shah, S., Kumari, P., & Kumar, S. (2015). Comparison of green extraction methods with conventional extraction method for extract yield, L-DOPA concentration and antioxidant activity of Mucuna pruriens seed. Green Chemistry Letters and Reviews, 8(2), 43-48.  [Google Scholar]
  9. Etemadi, F., Hashemi, M., Randhir, R., ZandVakili, O., & Ebadi, A. (2018). Accumulation of L-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on L-DOPA yield. The Crop Journal, 6(4), 426-434.  [Google Scholar]
  10. Fernandez‐Pastor, I., Luque‐Muñoz, A., Rivas, F., Medina‐O’Donnell, M., Martinez, A., Gonzalez‐Maldonado, R., ... & Parra, A. (2019). Quantitative NMR analysis of L‐Dopa in seeds from two varieties of Mucuna pruriens. Phytochemical Analysis, 30(1), 89-94. [Google Scholar]
  11. Goyoaga, C., Burbano, C., Cuadrado, C., Varela, A., Guillamón, E., Pedrosa, M. M., & Muzquiz, M. (2008). Content and distribution of vicine, convicine and L-DOPA during germination and seedling growth of two Vicia faba L. varieties. European Food Research and Technology, 227(5), 1537-1542. [Google Scholar]
  12. Hall, M. F. E., & Church, F. C. (2020).  Integrative medicine and health therapy for Parkinson disease. Topics in Geriatric Rehabilitation, 36(3), 176-186.      [Google Scholar]
  13. Kalachar, H. C. B., Basavanna, S., Viswanatha, R., Naik, Y. A., Raj, D. A., & Sudha, P. N. (2011). Electrochemical Determination of L‐Dopa in Mucuna pruriens Seeds, Leaves and Commercial Siddha Product Using Gold Modified Pencil Graphite Electrode. Electroanalysis, 23(5), 1107-1115.    [Google Scholar]
  14. Kasture, V. S., Sonar, V. P., Patil, P. P., & Musmade, D. (2014). Quantitative Estimation of L-DOPA from Polyhebal Formulation by using RP-HPLC. American Journal of Pharmatech Research, 4(3), 408-414. [Google Scholar]
  15. Khan, S. T., Ahmed, S., Gul, S., Khan, A., & Al-Harrasi, A. (2021). Search for safer and potent natural inhibitors of Parkinson's disease. Neurochemistry International, 149, 105135.   [Google Scholar]
  16. Müller, T. (2015). Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs, 75(2), 157-174. [Google Scholar]
  17. Mwatseteza, J., & Torto, N. (2007). Amperometric detection of 3-(3, 4-Dihydroxyphenyl)-L-alanine (L-Dopa) in raw and cooked mucuna bean seeds employing micro-HPLC. Chromatographia, 66(9), 811-813.  [Google Scholar]
  18. Nutt, J. G. (2008). Pharmacokinetics and pharmacodynamics of levodopa. Movement disorders: official journal of the Movement Disorder Society, 23(S3), S580-S584.  [Google Scholar]
  19. Patil, R. R., Gholave, A. R., Jadhav, J. P., Yadav, S. R., & Bapat, V. A. (2015). Mucuna sanjappae Aitawade et Yadav: a new species of Mucuna with promising yield of anti-Parkinson’s drug L-DOPA. Genetic Resources and Crop Evolution, 62(1), 155-162.  [Google Scholar]
  20. Pavón-Pérez, J., Oviedo, C. A., Elso-Freudenberg, M., Henríquez-Aedo, K., & Aranda, M. (2019). LC-MS/MS method for L-DOPA quantification in different tissues of Vicia faba. Journal of the Chilean Chemical Society, 64(4), 4651-4653. [Google Scholar]
  21. Poewe, W., & Antonini, A. (2015). Novel formulations and modes of delivery of levodopa. Movement Disorders, 30(1), 114-120. [Google Scholar]
  22. Polanowska, K., Łukasik, R. M., Kuligowski, M., & Nowak, J. (2019). Development of a sustainable, simple, and robust method for efficient L-DOPA extraction. Molecules, 24(12), 2325.  [Google Scholar]
  23. Rahmani-Nezhad, S., Dianat, S., Saeedi, M., Tehrani, M. B., Ghadiri, A., & Hadjiakhoondi, A. (2018). Evaluating the accumulation trend of l-dopa in dark-germinated seeds and suspension cultures of phaseolus vulgaris l. by an efficient UV-Spectrophotometric method. Química Nova, 41, 386-393. [Google Scholar]
  24. Randhir, R., Shetty, P., & Shetty, K. (2002). L-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochemistry, 37(11), 1247-1256. [Google Scholar]
  25. Rathod, B. G., & Patel, N. M. (2014). Development of validated RP-HPLC method for the estimation of L-Dopa from Mucuna pruriens, its extracts and in Aphrodisiac formulation. Int. J. Pharma Sci. Res, 5, 508-513. [Google Scholar]
  26. Renna, M., De Cillis, F., Leoni, B., Acciardi, E., & Santamaria, P. (2020). From by-product to unconventional vegetable: Preliminary evaluation of fresh fava hulls highlights richness in L-DOPa and low content of anti-nutritional factor. Foods, 9(2), 159.  [Google Scholar]
  27. Rezak, M. (2007). Current pharmacotherapeutic treatment options in Parkinson’s disease. Disease-a-month, 53(4), 214-222.  [Google Scholar]
  28. Rwei, S. Y. L., Chang, W. H., & Lou, B. S. (2018). Detection of neurotransmitter (Levodopa) in vegetables using nitrogen-doped graphene oxide incorporated nickel oxide modified electrode. Int. J. Electrochem. Sci, 13, 7206-7217. [Google Scholar]
  29. Siddhuraju, P., & Becker, K. (2001). Rapid reversed-phase high performance liquid chromatographic method for the quantification of L-Dopa (L-3, 4-dihydroxyphenylalanine), non-methylated and methylated tetrahydroisoquinoline compounds from Mucuna beans. Food chemistry, 72(3), 389-394.  [Google Scholar]
  30. Singh, R. M., Saini, P. K., Mathur, S. C., Singh, G. N., & Kumar, S. (2010). Application of high performance liquid chromatography to the determination and validation of levodopa in methanolic extract of Mucuna utilis. International Journal of Green Pharmacy (IJGP), 4(3).  [Google Scholar]
  31. Sushama, A. P., Onkar A, A., Shripad N, S., & Jyoti P, J. (2013). Biological sources of L-DOPA: An alternative approach. Advances in Parkinson's Disease, 2013.  [Google Scholar]
  32. Tizabi, Y., Getachew, B., & Aschner, M. (2021). Novel pharmacotherapies in Parkinson’s disease. Neurotoxicity Research, 39(4), 1381-1390. [Google Scholar]
  33. Vadivel, V., & Biesalski, H. K. (2012). Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains. Journal of Food science and Technology, 49(6), 673-684. [Google Scholar]
  34. Varga, E., & Varga, M. (2014). Development and validation of an LC-MS/MS method for the analysis of L-DOPA in oat. Acta Biologica Szegediensis, 58(2), 133-137. [Google Scholar]
  35. Valdés, R. H., Puzer, L., Gomes Jr, M., Marques, C. E., Aranda, D. A., Bastos, M. L., ... & Antunes, O. A. C. (2004). Production of L-DOPA under heterogeneous asymmetric catalysis. Catalysis Communications, 5(10), 631-634.  [Google Scholar]
  36. Yang, X., Zhang, X., & Zhou, R. (2001). Determination of l-dopa content and other significant nitrogenous compounds in the seeds of seven Mucuna and Stizolobium species in China. Pharmaceutical biology, 39(4), 312-316.  [Google Scholar]