International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2023, Vol. 7(2) 157-168

The Effects of Silicon Dioxide Priming on Some Germination and Vegetative Growth Parameters of Rocket Cultivars Under Salt Stress Conditions

Ayşe Gül Nasırcılar & Kamile Ulukapı

pp. 157 - 168   |  DOI: https://doi.org/10.29329/ijiaar.2023.568.1

Published online: June 29, 2023  |   Number of Views: 69  |  Number of Download: 327


Abstract

Rocket (Eruca vesicaria), a plant from the cruciferous (Brassicaceae) family, whose leaves are eaten as a salad, is also considered a medicinal plant due to its different therapeutic properties. In this study, the effects of silicon dioxide priming (0.5, 1, 1.5 mM SiO2) on the germination and vegetative growth properties of two different rocket cultivars (Geniş Yaprak, Eda) were investigated under increased salt stress conditions (150, 200 mM NaCl). For this purpose, germination percentage (GP), germination index (GI), germination rate coefficient (CVG), mean germination time (MGT) germination rate index (GRI) were calculated as germination parameters. Shoot and root length (mm), leaf width and length (mm), plant fresh weight (g) were measured in seedlings developed from germinated seeds, and seedling vigour index (SVI) was calculated. The effects of SiO2 priming on germination and vegetative growth differed according to the cultivar. In Geniş Yaprak cv., 1 mM SiO2 application had a positive effect on germination parameters both in seeds not applied salt stress and under 150 mM salt stress, and increased the germination rate from 30% to 73%, especially in salty conditions. Under 200 mM salt stress, 1.5 mM SiO2 had a positive effect on germination parameters in same cultivar. Although SiO2 applications in Eda cv. were not effective on germination parameters under stress-free conditions, they had a positive effect on vegetative parameters. Especially, 1.5 mM application dose increased SVI, root and shoot length and plant fresh weight. In both salt concentrations, 1 mM application dose made a slight improvement in germination parameters of Eda cv. The positive effects of SiO2 applications on vegetative growth parameters such as leaves, roots and shoots were determined at different doses for both salt concentrations.

Keywords: Germination, Priming, Rocket, Salt Stress, Silicon Dioxide


How to Cite this Article

APA 6th edition
Nasircilar, A.G. & Ulukapi, K. (2023). The Effects of Silicon Dioxide Priming on Some Germination and Vegetative Growth Parameters of Rocket Cultivars Under Salt Stress Conditions . International Journal of Innovative Approaches in Agricultural Research, 7(2), 157-168. doi: 10.29329/ijiaar.2023.568.1

Harvard
Nasircilar, A. and Ulukapi, K. (2023). The Effects of Silicon Dioxide Priming on Some Germination and Vegetative Growth Parameters of Rocket Cultivars Under Salt Stress Conditions . International Journal of Innovative Approaches in Agricultural Research, 7(2), pp. 157-168.

Chicago 16th edition
Nasircilar, Ayse Gul and Kamile Ulukapi (2023). "The Effects of Silicon Dioxide Priming on Some Germination and Vegetative Growth Parameters of Rocket Cultivars Under Salt Stress Conditions ". International Journal of Innovative Approaches in Agricultural Research 7 (2):157-168. doi:10.29329/ijiaar.2023.568.1.

References
  1. Abbas, T., Sattar, A., Ijaz, M., Aatif, M., Khalid, S., & Sher, A. (2017). Exogenous silicon application alleviates salt stress in okra. Horticulture, Environment, and Biotechnology, 58(4): 342-349. [Google Scholar]
  2. Amiripour, H., Hashemloian, B. D., & Azimi, A. A. (2016). Morpho–physiological responses of Rocket (Eruca sativa L.) varieties to sodium sulfate (Na2SO4) stress: an experimental approach. Acta Physiologiae Plantarum, 38(10): 1-8. [Google Scholar]
  3. Baki, A.A. &  Anderson, J. D. (1973). Vigour determination in soybean by multiple criteria. Crop Science, 13: 630-633 [Google Scholar]
  4. Bassiony, S. S., & Ibrahim, M. G. (2016). Effect of silicon foliar sprays combined with moringa leaves extract on yield and fruit quality of. "Flame Seedless" Grape (Vitis vinifera L.). Journal of Plant Production, 7(10): 1127-1135. [Google Scholar]
  5. Benech, A, R. L., Fenner, M. & Edwards, P. J. (1991). Changes in germinability, ABA content and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L.) Moench. induced by water stress during grain filling. New Phytologist, 118(2): 339-347. [Google Scholar]
  6. Das, P., Manna, I., Biswas, A. K., & Bandyopadhyay, M. (2018). Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra). Environmental Science and Pollution Research, 25(26): 26625-26642. [Google Scholar]
  7. da Silva, D. L., de Mello Prado, R., Tenesaca, L. F. L., da Silva, J. L. F., & Mattiuz, B. H. (2021). Silicon attenuates calcium deficiency in rocket plants by increasing the production of non-enzymatic antioxidants compounds. Scientia Horticulturae, 285, 110169. [Google Scholar]
  8. Ellis, R. H. & Roberts, E. H. (1981). The Quantification of Ageing and Survival in Orthodox Seeds. Seed Science and Technology, 9: 373-409. [Google Scholar]
  9. Esechie, H. A. (1994). Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop Science, 172(3): 194-199. [Google Scholar]
  10. Essoh, A. P., Monteiro, F., Pena, A. R., Pais, M. S., Moura, M., & Romeiras, M. M. (2020). Exploring glucosinolates diversity in Brassicaceae: a genomic and chemical assessment for deciphering abiotic stress tolerance. Plant Physiology and Biochemistry, 150: 151-161. [Google Scholar]
  11. Gomes, F. A. L., Araújo, R. H. C. R., Nóbrega, J. S., Fátima, R. T., Silva, M. S., Santos, A. S., ... & Oliveira, C. J. A. (2018). Application of silicon to alleviate irrigation water salinity in melon growth. Journal of Experimental Agriculture International, 25(6): 1-9. [Google Scholar]
  12. Gosh, P., Dash, P. K., Rituraj, S. & Mannan, M. A. (2014). Effect of salinity on germination, growth and yield of radish (Raphanus sativus L.) varieties. International Journal of Biosciences, 5(1): 37-48. [Google Scholar]
  13. Guntzer, F., Keller, C., & Meunier, J. D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1): 201-213. [Google Scholar]
  14. Hamilton, J.M. (2010). Arugula crop production in arid and semi-arid regions: Nutritional value, postharvest quality, and sustainability in controlled environments. PhD diss., University of Arizona, Tucson, AZ [Google Scholar]
  15. Hamilton, J. M., & Fonseca, J. M. (2010). Effect of saline irrigation water on antioxidants in three hydroponically grown leafy vegetables: Diplotaxis tenuifolia, Eruca sativa, and Lepidium sativum. HortScience, 45(4): 546-552. [Google Scholar]
  16. Hassan, S.M., Ashour, M. & Soliman, A.F. (2017). Anticancer Activity, Antioxidant Activity, Mineral Contents, Vegetative and Yield of Eruca sativa Using Foliar Application of Autoclaved Cellular Extract of Spirulina platensis Extract, Comparing to NPK Fertilizers. Journal of plant Production, 8(4): 529-536. [Google Scholar]
  17. Hussain, A. J., & AL-Taey, D. K. (2020). Study of the effect of selenium and Si02 addition on some growth parameters of rocket (Eruca sativa mill.) under water stress. Plant Archives, 20(1): 3594-3598. [Google Scholar]
  18. ISTA (1985). International Rules for Seed Testing. Seed Science Technology, 13. [Google Scholar]
  19. Kaur, S., Kaur, N., Siddique, K. H., & Nayyar, H. (2016). Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Archives of Agronomy and Soil Science, 62(7): 905-920. [Google Scholar]
  20. Kim, H. J., Fonseca, J. M., Choi, J. H., Kubota, C., & Kwon, D. Y. (2008). Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). Journal of Agricultural and Food Chemistry, 56(10): 3772-3776. [Google Scholar]
  21. Kotowski, F. (1926). Temperature relations to germination of vegetable seed. Proceedings of the American Society for Horticultural Science, 23: 176-184. [Google Scholar]
  22. Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C., & Abdelly, C. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45(3-4): 244-249. [Google Scholar]
  23. Kusvuran, S., & Ellialtioglu, S. S. (2021). Assessment of different organic matters on antioxidative enzyme activities and nutritional components under salt stress in salad rocket (Eruca sativa). Japs: Journal of Animal & Plant Sciences, 31(5): 1319-1328 [Google Scholar]
  24. Lee, S. K., Sohn, E. Y., Hamayun, M., Yoon, J. Y. & Lee, I. J. (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry systems, 80(3): 333-340. [Google Scholar]
  25. Liang, Y., Chen, Q.I.N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of plant physiology, 160(10): 1157-1164. [Google Scholar]
  26. Liang, Y., Zhang, W., Chen, Q., Liu, Y., & Ding, R. (2006). Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 57(3): 212-219. [Google Scholar]
  27. Morales, M., & Janick, J. (2002). Arugula: A promising specialty leaf vegetable. In: Janick, J., Whipkey, A. (Eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA, USA: 418-423. [Google Scholar]
  28. Nasırcılar, A. G., Ulukapı, K., & Üstüner, H (2021). Exogenous silicon dioxide treatment in carrot (Daucus carota L.) under salt stress conditions. Türk Tarım ve Doğa Bilimleri Dergisi, 8(4): 1094-1102. [Google Scholar]
  29. Pennisi, G., Orsini, F., Landolfo, M., Pistillo, A., Crepaldi, A., Nicola, S., Fernandez, ´ J.A., Marcelis, L.F.M. & Gianquinto, G. (2020). Optimal photoperiod for indoor cultivation of leafy vegetables and herbs. European Journal of  Horticultural Science, 85: 329–338. [Google Scholar]
  30. Rhaman, M. S., Rauf, F., Tania, S. S., & Khatun, M. (2020). Seed priming methods: Application in field crops and future perspectives. Asian Journal of Research in  Crop Science, 5(2): 8-19. [Google Scholar]
  31. Sivritepe, H.Ö. (2012). Tohum Gücünün Değerlendirilmesi. Alatarım Dergisi, 11(2): 33-44 [Google Scholar]
  32. Smoleń, S., Lukasiewicz, A., Klimek-Chodacka, M., & Baranski, R. (2020). Effect of soil salinity and foliar application of jasmonic acid on mineral balance of carrot plants tolerant and sensitive to salt stress. Agronomy, 10(5): 659-680. [Google Scholar]
  33. Sun, Y., Xu, J., Miao, X., Lin, X., Liu, W. & Ren, H. (2021). Effects of exogenous silicon on maize seed germination and seedling growth. Scientific Reports, 11(1): 1-13. [Google Scholar]
  34. Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schrijver, R., Hansen, M.,Gerhauser,C., Mithen, R. & Dekker, M. (2008). Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 53: 219. [Google Scholar]
  35. Vishal, B., & Kumar, P.P. (2018). Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontiers in Plant Science, 9: 838. [Google Scholar]
  36. Wong, C. C., Li, H. B., Cheng, K. W., & Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97(4): 705-711. [Google Scholar]
  37. Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3): 527-533. [Google Scholar]