International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2017, Vol. 1(1) 40-50

Genetic analysis of pollen viability: an indicator of heat stress in sunflower (Helianthus annuus L.)

Khuram Razaq, Saeed Rauf, Muhammad Shahzad, Ejaz Ashraf & Fawad Shah

pp. 40 - 50   |  DOI:

Published online: December 19, 2017  |   Number of Views: 603  |  Number of Download: 1024


Pollen viability represents sporo-gametophytic tolerance to the heat stress. Therefore, pollen fertility index under heat stress can be exploited to differentiate resistant and susceptible genotypes.  Information relative to genetics of pollen viability is necessary to improve pollen viability under heat stress. Studies were initiated to develop and evaluate heat tolerant populations under controlled and field conditions. Result showed that pollen fertility index of genotypes was stable over the years. It showed moderate to high heritability, which was due to greater magnitude of genotypic effects in total phenotype. Studies showed that pollen fertility was primarily controlled by dominant type of genetic variability which showed that selection per se for the pollen fertility could be improved through recurrent selection. General combining analysis showed that gametophytic type of heat resistance was important in the inheritance of pollen viability. Heat resistance was dependent on the genotype of gametes as indicated from lack of relationship between mean performance of inbred line per se and their progenies for pollen viability.  

Keywords: Heat stress, reproductive fitness, pollen staining, floral head, sterility, abiotic stress, mobilization of reserve, gene action, dominance

How to Cite this Article

APA 6th edition
Razaq, K., Rauf, S., Shahzad, M., Ashraf, E. & Shah, F. (2017). Genetic analysis of pollen viability: an indicator of heat stress in sunflower (Helianthus annuus L.) . International Journal of Innovative Approaches in Agricultural Research, 1(1), 40-50. doi: 10.29329/ijiaar.2017.100.5

Razaq, K., Rauf, S., Shahzad, M., Ashraf, E. and Shah, F. (2017). Genetic analysis of pollen viability: an indicator of heat stress in sunflower (Helianthus annuus L.) . International Journal of Innovative Approaches in Agricultural Research, 1(1), pp. 40-50.

Chicago 16th edition
Razaq, Khuram, Saeed Rauf, Muhammad Shahzad, Ejaz Ashraf and Fawad Shah (2017). "Genetic analysis of pollen viability: an indicator of heat stress in sunflower (Helianthus annuus L.) ". International Journal of Innovative Approaches in Agricultural Research 1 (1):40-50. doi:10.29329/ijiaar.2017.100.5.

  1. Abdul-Baki, A. A. (1992). Determination of pollen viability in tomatoes. J.Am. Soci. Hortic. Sci. 117, 473-476. [Google Scholar]
  2. Chatterjee, R., S. Sarkar and G.N. Narsemah Rao. (2014). Improvised Media for in vitro Pollen Germination of some species of Apocynaceae. Int. J.Environ. 3, 146-153. [Google Scholar]
  3. Clarke, H.J. and H.K.M. Siddique. (2004). Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res. 90, 323-334. [Google Scholar]
  4. Coast, O., A.J.Murdoch, R.H.Ellis, F.R. Hay, and K.S.V.Jagadish. (2015). Resilience of rice (Oryza spp.) pollen germination and tube growth to temperature stress. Plant Cell Environ. DOI: 10.1111/pce.12475 [Google Scholar]
  5. Das, S., P. Krishnan, M. Nayak and M.B. Ramakrishnan. (2014). High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot. 2014. 101: 36-46. [Google Scholar]
  6. Dane, F.,A.G. Hunter, and O.L. Chambliss. (1991).  Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high-temperature field conditions. J. Am. Soci. Hortic. Sci. 116: 906-910. [Google Scholar]
  7. Dudley, J.W., and R.H. Moll. (1969). Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Sci 9: 257-262. [Google Scholar]
  8. Frescura, V.D., H.D. Laughinghouse, and T.S.Cantodorow. (2012). Pollen viability of Polygala paniculata L. (Polygalaceae) using different staining methods. Bio Cell 36: 143-145. [Google Scholar]
  9. Fu, G. F., S. Jian, J.Xiong, Y.R. Li, H.Z. Chen, M.K. Le, and L.X. Tao. (2011). Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress. Agric. Sci. China 10: 1016-1025. [Google Scholar]
  10. Gaaliche, B.,A. Majdoub, M. Trad, and M. Mars. (2013). Assessment of pollen viability, germination, and tube growth in eight Tunisian caprifig (Ficus carica L.) Cultivars. ISRN Agron. [Google Scholar]
  11. Harsant, J., L. Pavlovic, G. Chiu, S. Sultmanis, and T.L. Sage. (2013). High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J. Exp. Bot. 142-152. [Google Scholar]
  12. Hallauer, A.R., M.J. Carena, and J.D. Miranda. (2010). Testers and combining ability (pp. 383-423). Springer New York. [Google Scholar]
  13. Huang, Z., J. Zhu, X. Mu and J. Lin. (2004). Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Annal Bot. 93, 295-301. [Google Scholar]
  14. Ilgin, M., F. Ergenoglu, and S. Caglar. (2007). Viability, germination and amount of pollen in selected caprifig types. Pak. J. Bot. 39: 1-9. [Google Scholar]
  15. Kalyar, T., S. Rauf, J.A.T. da Silva, S. Haidar, and Z.Iqbal. (2013). Utilization of leaf temperature for the selection of leaf gas-exchange traits to induce heat resistance in sunflower (Helianthus annuus L.). Photosynthetica. 51: 419-428. [Google Scholar]
  16. Kalyar, T., S. Rauf, J.A.T. Teixeira Da Silva, and M.Shahzad. (2014). Handling sunflower (Helianthus annuus L.) populations under heat stress. Arch. Agronomy Soil. Sci. 60, 655-672. [Google Scholar]
  17. Kempthorne, O. (1957). An introduction of genetic statistics, John Willey & Sons Inc. New York, USA, pp. 468-473.  [Google Scholar]
  18. Murthy, M.N.K., Y.A.N. Reddy and K. Viruakshappa. (1994). Development of suitable germination medium for trinucleate pollen grains. An illustration with sunflower. J. Oilseeds. Res. 11(2):304-307.  [Google Scholar]
  19. Nguyen, C. T., V. Singh, E. van Oosterom, D. Jordan, S. Chapman, and G. Hammer. (2012). High temperature effects on development and floret sterility of diverse sorghum lines. In 16th Australian Agronomy Conference. Australian Society of Agronomy. [Google Scholar]
  20. Nguyen, G.N., and B.G. Sutton. (2009). Water deficit reduced fertility of young microspores resulting in a decline of viable mature pollen and grain set in rice. J. Agron. Crop Sci. 195, 11-18. [Google Scholar]
  21. Nguyen G.N., and B.G. Sutton. (2009). Water Deficit Reduced Fertility of Young Microspores Resulting in a Decline of Viable Mature Pollen and Grain Set in Rice. J.  Agron. Crop Sci. 195: 11–18. [Google Scholar]
  22. Nguyen, H.T, and Blum, A. (Eds.). (2004). Physiology and biotechnology integration for plant breeding. CRC Press. [Google Scholar]
  23. Patel, R.G.,and A.U. Mankad. (2014). In Vitro Pollen Germination: A Review. Int. J. Sci. Res. 3, 304-307. [Google Scholar]
  24. Pressman, E., M. M. Peet, and D. M. Pharr. (2002). The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Annals Bot. 90: 631-636. [Google Scholar]
  25. Rauf, S. (2008). Breeding sunflower (Helianthus annuus L.) for drought tolerance. Commun. Biom. Crop Sci. 3: 29-44. [Google Scholar]
  26. Rodriguez-Riano, T., and A. Dafni. (2010). A new procedure to asses pollen viability. Sex. Plant Reprod. 12: 241-244. [Google Scholar]
  27. Sarhadi, E., M.M. Bazargani, A.G. Sajise, S. Abdolahi, N.A. Vispo, M.Arceta, and G.H. Salekdeh. (2012). Proteomic analysis of rice anthers under salt stress. Plant Physiol Bioch. 58, 280-287. [Google Scholar]
  28. Schoper, J.B., R.J.Lambert, and B.L. Vasilas. (1987). Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci. 27: 27-31. [Google Scholar]
  29. Satish, D.,and R.L. Ravikumar. (2010). Standardization of in vitro pollen germination media in selected varieties of cotton and tomato. Karn. J Agric. Sci. 2010. 23:317-319. [Google Scholar]
  30. Sato, S. M.M.Peet, and J.F.Thomas. (2002). Determining critical pre‐and post‐anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53: 1187-1195. [Google Scholar]
  31. Sulusoglu, M., and A. Cavusoglu (2014). In Vitro Pollen Viability and Pollen Germination in Cherry Laurel (Prunus laurocerasus L.). Scient. World J. 5:161-169. [Google Scholar]
  32. Vaughton, G., and M. Ramsey. (1991). Floral biology and inefficient pollen removal in Banksiana spinulosa var. neoanglica (Proteaceae). Aust. J. Bot.39,167-77 [Google Scholar]
  33. Verhoeven, K.J.F., J.L. Jannink and L.M. McIntyre. (2006). Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity. 96, 139-149. [Google Scholar]