International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article    |    Open Access
International Journal of Innovative Approaches in Agricultural Research 2022, Vol. 6(1) 1-11

Root Architecture and Development of American Grape Rootstocks Grafted with Foxy Grapes (Vitis labrusca L.) Cultivars

Besim Karabulut, Hüseyin Çelik, Bülent Köse, Yahya Uray & Fatma Türk

pp. 1 - 11   |  DOI:

Published online: March 31, 2022  |   Number of Views: 23  |  Number of Download: 70


One of the important factors affecting rootstock performance in grafted grapevine production is root structure and its ability for different soil. In the present study, foxy grape varieties registered for the first time in the Black Sea Region in Turkey by the selection, and several American grape rootstocks were bench grafted. In this study; it is aimed to examine the root architecture of foxy grape grafted saplings for their root architecture and the development of rootstocks. In the experiment ‘Rizessi’, ‘Çeliksu’, ‘Ülkemiz’ and ‘Rizellim’ foxy grape cultivars grafted on 140Ru, SO4 and 110R rootstocks. WinRhizo root analysis program (Regent Instrument Inc. Canada, ver.2013) was used to determine rootstocks' architecture and development of grafted vine saplings. Roots prepared for scanning were placed on the scanning part of the device and transferred to the computer context. Root length and mean root diameter are two of the essential features that reveal the root architecture of rootstocks. In the study, root length (cm), root surface area (cm2), root diameter (mm), root volume (cm3), root tip number (piece), root branching number (piece), and root intersection number (piece) were determined. Total root length was determined between 330.05 - 595.40 cm ('Rizellim'/SO4 and 'Çeliksu'/140Ru) and mean root diameter of 2.04 - 3.13 mm ('Çeliksu'/140Ru and 'Rizessi'/110R). Negative relationships were found between root length and mean root diameter. Among the rootstocks, the highest root surface area was 399.67 cm2, root volume was 29.32 m3, the number of root tips was 1605.75, the number of root forks was 5421.89, and the number of root crossing was 671.61 on 110R rootstock. In all combinations obtained as a result of the study, it was determined that the rootstocks showed good root development and were in harmony with the new foxy grape cultivars.

Keywords: WinRhizo, American vine rootstocks, Foxy grape, Root architecture

How to Cite this Article

APA 6th edition
Karabulut, B., Celik, H., Kose, B., Uray, Y. & Turk, F. (2022). Root Architecture and Development of American Grape Rootstocks Grafted with Foxy Grapes (Vitis labrusca L.) Cultivars . International Journal of Innovative Approaches in Agricultural Research, 6(1), 1-11. doi: 10.29329/ijiaar.2022.434.1

Karabulut, B., Celik, H., Kose, B., Uray, Y. and Turk, F. (2022). Root Architecture and Development of American Grape Rootstocks Grafted with Foxy Grapes (Vitis labrusca L.) Cultivars . International Journal of Innovative Approaches in Agricultural Research, 6(1), pp. 1-11.

Chicago 16th edition
Karabulut, Besim, Huseyin Celik, Bulent Kose, Yahya Uray and Fatma Turk (2022). "Root Architecture and Development of American Grape Rootstocks Grafted with Foxy Grapes (Vitis labrusca L.) Cultivars ". International Journal of Innovative Approaches in Agricultural Research 6 (1):1-11. doi:10.29329/ijiaar.2022.434.1.

  1. Ali, K., Maltese, F., Choi, Y. H., Verpoorte, R. 2010. Metabolic constituents of grapevine and grape-derived products. Phytochemistry Reviews, 9(3), 357-378. [Google Scholar]
  2. Alsina, M. M., Smart, D. R., Bauerle, T., De Herralde, F., Biel, C., Stockert, C., Negron, C., Save, R. 2011. Seasonal changes of whole root system conductance by a drought-tolerant grape root system. Journal of experimental botany, 62(1), 99-109. [Google Scholar]
  3. Bouma, T. J., Nielsen, K. L., Koutstaal, B. 2000. Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant and soil, 218(1), 185-196. [Google Scholar]
  4. Box Jr, J. E. 1996. "Modern methods for root investigations. Plant roots: The hidden half. [Google Scholar]
  5. Comas, L., Becker, S., Cruz, V. M. V., Byrne, P. F., Dierig, D. A. 2013. Root traits contributing to plant productivity under drought." Frontiers in Plant Science, 4, 442. [Google Scholar]
  6. Creasy, G. L., Creasy, L. L. 2018. Grapes (Vol. 27): CABI. 413. [Google Scholar]
  7. Çelik, H. 2004. Üzüm Yetiştiriciliği. Pazar Ziraat Odası Egitim Yay, Pazar Ofset. Rize.  121 [Google Scholar]
  8. Çelik, H., Köse, B., Ateş, S. 2018. Karadeniz bölgesinden selekte edilerek tescillenen yeni kokulu üzüm (Vitis labrusca L.) çeşitleri. Bahçe, 47(Özel Sayı 1), 299-309. [Google Scholar]
  9. Dumont, C., Cochetel, N., Lauvergeat, V., Cookson, S. J., Ollat, N., Vivin, P. (2014). Screening root morphology in grafted grapevine using 2D digital images from rhizotrons. Paper presented at the I International Symposium on Grapevine Roots 1136. 213-220 [Google Scholar]
  10. Ferreira, V., Bueno, M., Franco-Luesma, E., Cullere, L., Fernandez-Zurbano, P. 2014. Key changes in wine aroma active compounds during bottle storage of Spanish red wines under different oxygen levels. Journal of agricultural and food chemistry, 62(41), 10015-10027. [Google Scholar]
  11. Fleishman, S. M., Eissenstat, D. M., Centinari, M. 2019. Rootstock vigor shifts aboveground response to groundcover competition in young grapevines. Plant and soil, 440(1), 151-165. [Google Scholar]
  12. Gautier, A. T., Merlin, I., Doumas, P., Cochetel, N., Mollier, A., Vivin, P., Lauvergeat, V., Péret, B., Cookson, S. J. 2021. Identifying roles of the scion and the rootstock in regulating plant development and functioning under different phosphorus supplies in grapevine. Environmental and Experimental Botany, 185, 104405. [Google Scholar]
  13. Geier, T., Eimert, K., Scherer, R., Nickel, C. 2008. Production and rooting behaviour of rol B-transgenic plants of grape rootstock ‘Richter 110’(Vitis berlandieri× V. rupestris). Plant cell, tissue and organ culture, 94(3), 269-280. [Google Scholar]
  14. Hanana, M., Hamrouni, L., Hamed, K., Abdelly, C. 2015. Influence of the rootstock/scion combination on the grapevines behavior under salt stress. Journal of Plant Biochemistry & Physiology. [Google Scholar]
  15. Himmelbauer, M. L. 2004. Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant and soil, 260(1), 111-120. [Google Scholar]
  16. Keller, M. 2015. The science of grapevines (Vol. 509p): Academic Press. [Google Scholar]
  17. Köse, B., Ateş, S., Çelik, H. 2016. Farklı anaçlar üzerine aşılı kokulu kara üzüm (Vitis labrusca L.) ve Şiraz (Vitis vinifera L.) üzüm çeşitlerinin fidan randımanı ve gelişimi üzerine ağır bünyeli toprakların etkileri. Harran Tarım ve Gıda Bilimleri Dergisi, 20(2), 135-145. [Google Scholar]
  18. McCarthy, M., Cirami, R., Furkaliev, D. 1997. Rootstock response of Shiraz (Vitis vinifera) grapevines to dry and drip‐irrigated conditions. Australian Journal of Grape and Wine Research, 3(2), 95-98. [Google Scholar]
  19. Mudge, K., Janick, J., Scofield, S., Goldschmidt, E. E. 2009. A history of grafting. ” in Horticultural Reviews Vol. 35, ed. J. Janick (Hoboken, NJ: John Wiley & Sons, Inc.) 437-493. [Google Scholar]
  20. Peiro, R., Jimenez, C., Perpina, G., Soler, J. X., Gisbert, C. 2020. Evaluation of the genetic diversity and root architecture under osmotic stress of common grapevine rootstocks and clones. Scientia Horticulturae, 266, 109283. [Google Scholar]
  21. Pouget, R. 1990. Histoire de la lutte contre le phylloxéra de la vigne en France: INRA-OIV. [Google Scholar]
  22. Rombaldi, C. V., Bergamasqui, M., Lucchetta, L., Zanuzo, M., Silva, J. A. 2004. Produtividade e qualidade de uva, cv. Isabel, em dois sistemas de produção. Revista Brasileira de Fruticultura, 26, 89-91. [Google Scholar]
  23. Toaldo, I. M., Fogolari, O., Pimentel, G. C., de Gois, J. S., Borges, D. L., Caliari, V., Bordignon-Luiz, M. 2013. Effect of grape seeds on the polyphenol bioactive content and elemental composition by ICP-MS of grape juices from Vitis labrusca L. LWT-Food Science and Technology, 53(1), 1-8. [Google Scholar]
  24. Walker, R. R., Read, P. E., Blackmore, D. H. 2000. Rootstock and salinity effects on rates of berry maturation, ion accumulation and colour development in Shiraz grapes. Australian Journal of Grape and Wine Research, 6(3), 227-239. [Google Scholar]
  25. Wang, M.-B., Zhang, Q. 2009. Issues in using the WinRHIZO system to determine physical characteristics of plant fine roots. Acta Ecologica Sinica, 29(2), 136-138. [Google Scholar]
  26. Yağcı, A., Zenginoğlu, M. E. 2019. Açık Köklü Asma Fidanı Üretiminde Farklı Malç Materyalleri ve Gölgeleme Oranlarının Fidan Randımanı ve Kalitesine Etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 16(2), 201-208. [Google Scholar]
  27. Yıldırım, K., Yağcı, A., Sucu, S., Tunç, S. 2018. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268. [Google Scholar]