International Journal of Innovative Approaches in Agricultural Research
Abbreviation: IJIAAR | ISSN (Online): 2602-4772 | DOI: 10.29329/ijiaar

Original article | International Journal of Innovative Approaches in Agricultural Research 2021, Vol. 5(1) 141-157

Environment Adjusted Yield Model for Ranking and Stability Assessment of Winter Triticale (X Triticosecale Wittm.) Genotypes

Hristo Stoyanov

pp. 141 - 157   |  DOI: https://doi.org/10.29329/ijiaar.2021.339.11

Published online: March 31, 2021  |   Number of Views: 7  |  Number of Download: 35


Abstract

Obtaining high yields from crops such as triticale is directly related to the interaction of the used genotypes with the conditions of the environment. Therefore, the breeding of the crop is targeted toward reducing the effects, which various stress factors have on productivity. One of the shortcomings of the interaction of the genotype with the environment is that under contrasting growing conditions the different cultivars are ranked in a different way according to their yield value. This considerably hinders their evaluation and the possibility to choose the most suitable cultivars for the respective geographic area and micro region. In order to adequately assess the different triticale genotypes under contrasting conditions of the environment, a model for yield ranking was developed. It is based on the ratio between the reaction of the genotype under specific conditions of the environment with the mean productivity of the same genotype under the rest of the conditions of testing. This allowed increasing the contrast between differing genotypes and their more adequate ranking under certain conditions, or as a whole during the tested contrasting periods. On the other hand, the model allowed grouping of the genotypes with identical reaction to the conditions of the environment. The model was applied to eleven Bulgarian winter triticale cultivars (Kolorit, Atila, Akord, Respekt, Bumerang, Irnik, Dobrudzhanets, Lovchanets, Doni 52, Blagovest and Borislav) and to six contrasting periods of growing (2015 – 2020). The results from the model values showed that the cultivars were grouped in different ways during the individual periods in comparison to their grouping according to yield values. Cultivars with similar productivity having identical ranks contrasted better with each other when applying the model. The genotypes, which possessed high stability, were characterized with lower ranks according to the results from the used model, especially in periods with clearly expressed drought. The ranks of the model values remained significantly high regardless of the conditions of the environments in cultivars Bumerang and Doni 52. The developed model demonstrated considerable similarities to the HARV and Hi models and can be reliably used in practical breeding work under contrasting environments.

Keywords: Environment, Model, Triticale, Stability, Yield


How to Cite this Article?

APA 6th edition
Stoyanov, H. (2021). Environment Adjusted Yield Model for Ranking and Stability Assessment of Winter Triticale (X Triticosecale Wittm.) Genotypes . International Journal of Innovative Approaches in Agricultural Research, 5(1), 141-157. doi: 10.29329/ijiaar.2021.339.11

Harvard
Stoyanov, H. (2021). Environment Adjusted Yield Model for Ranking and Stability Assessment of Winter Triticale (X Triticosecale Wittm.) Genotypes . International Journal of Innovative Approaches in Agricultural Research, 5(1), pp. 141-157.

Chicago 16th edition
Stoyanov, Hristo (2021). "Environment Adjusted Yield Model for Ranking and Stability Assessment of Winter Triticale (X Triticosecale Wittm.) Genotypes ". International Journal of Innovative Approaches in Agricultural Research 5 (1):141-157. doi:10.29329/ijiaar.2021.339.11.

References
  1. Aggarwal, P.K., Matthews, R.B. & Kropff, M.J. (1995). Opportunities for the application of systems approaches in plant breeding. Eds P.K. Aggarwal, R.B. Matthews, M.J. Kropff & H.H. van Laar. Applications of systems approaches in plant breeding. SARP Research Proceedings, AB-DLO, TPE-WAU, Wageningen and IRRI, Los Baños , pp. 135-144. [Google Scholar]
  2. Ahmed, H. S., Mohamoud, M. A., Ibrahim, A. E. S. & Suliman, A. M. (2019). Genotype  x  environment  interaction and  stability  analyses of  yield of  upland  cotton (Gossypium hirsutum L.) in central Sudan. Gezira J. of Agric. Sci., 17(1), [Google Scholar]
  3. Alberts, M. J. A. (2004). A comparison of statistical methods to describe genotype x environment interaction and yield stability in multi-location maize trials. Thesis presented in accordance with the requirements for the degree Magister Scientiae Agriculturae in the Faculty of Agriculture, Department of Plant Sciences (Plant Breeding) at the University of Free State. [Google Scholar]
  4. Ali, M., El-Sadek, A., Sayed, M. & Hassaan, M. (2015). AMMI Biplot Analysis of Genotype × Environment Interaction in Wheat in Egypt. Egyptian Journal of Plant Breeding, 19, 1889 – 1901. [Google Scholar]
  5. Azam, M.G., Iqba, M.S., Hossain, M.A. & Hossain, M.F. (2020). Stability  Investigation  and  Genotype  ×  Environment Association  in  Chickpea  Genotypes  Utilizing  AMMI  And GGE Biplot Model. Genetics and Molecular Research, 19(3), gmr16039980. [Google Scholar]
  6. Becker, H.C. & Leon, J. (1988). Stability Analysis in Plant Breeding. Plant Breeding, 101, 1-23. [Google Scholar]
  7. Beres, B.L., Hatfield, J.L., Kirkegaard, J.A., Eigenbrode, S.D., Pan, W.L., Lollato, R.P., Hunt, J.R., Strydhorst, S., Porker, K., Lyon, D., Ransom, J. & Wiersma, J. (2020). Toward a Better Understanding of Genotype-Environment-Management Interactions. A Global Wheat Initiative Agronomic Research Strategy. Front. Plant Sci., 11, 828. doi: 10.3389/fpls.2020.00828 [Google Scholar] [Crossref] 
  8. Bolandi, A., Imani, A.A., Shahbazi, H. & Mehraban, A. (2012). The study of compatibility of grain yield in barley advanced genotypes in tropical and subtropical regions. Annals of Biological Research, 3(12), 5540-5544. [Google Scholar]
  9. Chamurliyski, P. & Tsenov, N. (2013). Yield stability of contemporary Bulgarian winter wheat cultivars (Triticum aestivum L.) in Dobrudzha. Agricultural Science and Technologies, 5(1), 16-21. [Google Scholar]
  10. Chimonoyo, V.G.P., Mutengwa, C.S. & Chiduza, C. (2014). Genotype × environment interactions and yield stability of stress-tolerant open-pollinated maize varieties in the Eastern Cape province, South Africa. South African Journal of Plant and Soil, 31(2), 61-68. [Google Scholar]
  11. Das, A., Gupta, S., Parihar, A. K.,  Singh, D., Chand, R., Pratap, A., Singha, K. D. & Kushwaha, K. P. S. (2019). Delineating Genotype × Environment interactions towards durable resistance in mungbean against Cercospora leaf spot (Cercospora canescens) using GGE biplot. Plant Breeding, 00, 1–12. [Google Scholar]
  12. Dogan, R., Kacar, O., Goksu, E. & Azkan, N. (2011). Evaluation of triticale genotypes in terms of yield stability for the Southern Marmara Region. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 249-253. [Google Scholar]
  13. Goyal A., Beres, B. L., Randhawa, H. S., Navabi, A., Salmon, D. F. & Eudes, F. (2011).Yield stability analysis of broadlyadaptive triticale germplasm in southern and central Alberta, Canada for industrial end-use suitability. Can. J. Plant Sci, 91, 125-135. [Google Scholar]
  14. Gurung, T., Techawongstien, S., Suriharn, B. & Techawongstien, S. (2012). Stability analysis of yield and capsaicinoids content in chili (Capsicum spp.) grown across six environments. Euphytica, 187, 11-18. [Google Scholar]
  15. Kaya, Y. & Ozer, E. (2014). Parametric stability analyses of multi-environment yield trials in triticale (xTriticosecale Wittmack). Genetika, 46(3), 705- 718. [Google Scholar]
  16. Kaya, Y. & Turkoz, M. (2016). Evaluation of genotype by environment interaction for grain yield in durum wheat using non-parametric stability statistics. Turk. J. Field Crops, 21(1), 51-59. [Google Scholar]
  17. Kendal, E., & Sayar, M. S. (2016). The stability of some spring triticale genotypes using biplot analysis. The Journal of Animal & Plant Sciences, 26(3), 754-756. [Google Scholar]
  18. Kendal, E., Sayar, M. S., Tekdal, S., Aktas, H. & Karaman, M. (2016). Assessment of the impact of ecological factors on yield and quality parameters in triticale using GGE biplot and AMMI analysis. Pakistan Journal of Botany, 48(5), 1903-1913. [Google Scholar]
  19. Lule, D., Tesfaye, K. & Mengistu, G. (2014). Genotype by environment interaction and grain yield stability analysis for advanced triticale (x. Triticosecale Wittmack) genotypes in Western Oromia, Ethiopia. Ethiopian Journal of Science, 37(1), 63-68. [Google Scholar]
  20. Martynov, S. (1990). A method for the estimation of crop varieties stability. Biometrical Journal, 7, 887-893. [Google Scholar]
  21. Osei, M. K., Annor, B., Adjebeng-Danquah, J., Danquah, A., Danquah, E., Blay, E. & Adu-Dapaah, H. (2019). Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development. In: Nyaku, S.T. & Danquach, A. (eds.). Recent Advances in Tomato Breeding and Production. InTechOpen. DOI: 10.5772/intechopen.70226. [Google Scholar]
  22. Palanisamy, S., Aggarwal, P.K., Thiyagarajan, T.M. & Ranganathan, T.B. (1995). Simulating yields and ranking of rice genotypes in multi-location trials. Eds P.K. Aggarwal, R.B. Matthews, M.J. Kropff & H.H. van Laar. Applications of systems approaches in plant breeding. SARP Research Proceedings, AB-DLO, TPE-WAU, Wageningen and IRRI, Los Baños (1995), pp. 91-95. [Google Scholar]
  23. Ramazani, S. H. R., Tajalli, H. & Ghoudsi, M. (2016). Evaluation of grain yield stability of superior triticale genotypes. Bulg. J. Agric. Sci., 22: 976–981 [Google Scholar]
  24. Randhawa, H.S., Bona, L. & Graf, R.J. (2015). Triticale breeding – Progress and Prospect. In: Eudes, F. (ed.), Triticale, pp. 14-32. [Google Scholar]
  25. Rao, G.J.N., Reddy J.N., Variar, M. & Mahender, A. (2019). Molecular Breeding to Improve Plant Resistance to Abiotic Stresses. In: Al-Khayri, J.M., Jain, S.M. & Johnson, D.V. (eds.). Advances in Plant Breeding Strategies: Cereals. Volume 5, 283-326. [Google Scholar]
  26. Sousa, M. B., Damasceno-Silva, K. J., Rocha, M. M., Junior, J. A. N. M. & Lima, L. R. L. (2017). Adaptability and yield stability of cowpea elite lines of semi-prostrate growth habit in the cerrado biome. Revista Ciência Agronômica, 48(5), Especial, 832-839. [Google Scholar]
  27. Srivastava, A. K., Srivastava, S., Dixit, G. P., Singh, N. P. & Nisar, M. (2020). Yield Stability in Chickpea Varieties Under Three Environments. ANVESHA-A Multidisciplinary E-Journal for all Researches, 1(1), 34-37. [Google Scholar]
  28. Stoyanov,  H.  &    Baychev, V.,  (2016a).  Assessment  of  Yield  Components Stability and Plasticity in Bulgarian Triticale (×Triticosecale Wittm.) Cultivars. Scientific works of Institute of Agriculture Karnobat, (in press) [Google Scholar]
  29. Stoyanov, H. & Baychev, V. (2016b). Analysis on “Genotype x Environment” Interaction in Bulgarian Triticale (×Triticosecale Wittm.) Cultivars. Scientific works of Institute of Agriculture – Karnobat, (in press) [Google Scholar]
  30. Stoyanov, H., Baychev V. & Mihova G. (2017a). Analysis and assessment of yield ranking models in Triticale (×Triticosecale Wittm.) in contrasting environmental conditions. Journal of Tekirdag Agricultural Faculty, The Special Issue of 2nd International Balkan Agriculture Congress, May 16-18, 2017, 83-90. [Google Scholar]
  31. Stoyanov, H., Baychev, V., Petrova, T. & Mihova, G. (2017b). Triticale cultivars suitable for growing under high level of abiotic stress. Journal of Mountain Agriculture on the Balkans, 20(6): 223-242. [Google Scholar]
  32. Stoyanov, H. & Baychev, V. (2018). Tendencies in the yield and its components of the Bulgarian varieties of triticale, grown under contrasting conditions of the environment. Rastenievadni nauki, 55(3), 16-26 (Bg) [Google Scholar]
  33. Stoyanov, H., (2018). Reacton of Triticale (xTriticosecale Wittm.) to Abiotic Stress. PhD Thesis, General Toshevo, Bulgaria (Bg) pp. 258 [Google Scholar]
  34. Stoyanov, H. (2020). Analysis on test weight of Bulgarian triticale cultivars. Rastenievadni nauki (In press). [Google Scholar]
  35. Szareski, V.J., Carvalho, I.R., Kehl, K., Levien, A.M., da Rosa, T.C., Barbosa, M.H., Demari, G.H., Pimentel, J.R., Troyjack, C., de Souza, V.Q., Martinazzo, E.G., Villela, F.A., Pedó, T. & Aumonde, T.Z. (2018). Phenotypic and predicted genetic approaches for genotype ranking of wheat seed yield in Brazil. Genetics and Molecular Research, 17(3), gmr18026. [Google Scholar]
  36. Tsenov, N., Atanasova, D., Todorov, I. & Dochev, V. (2008). Environmental effect on common winter wheat productivity In: J. Prohens and M. L. Badenes (Eds), “Modern Variety Breeding for Present and Future Needs”, Proceedings of the 18th EUCARPIA General Congress, 9-12 September 2008, Valencia, Spain, 480-484. [Google Scholar]
  37. Tsenov N., Atanasova, D., Nankova, M., Ivanova, A., Tsenova, E., Chamurliiski, P. & Raykov, G. (2014). Approaches for grading breeding evaluation of winter wheat varieties for grain yield. Scientific works of Institute of Agriculture – Karnobat, 3(1), 21-35 (Bg). [Google Scholar]
  38. Tsenov, N. & Atanasova, D. (2015). Influence of environments on the amount and stability of grain yield in the modern winter wheat cultivars. II. Evaluation of each variety. Bulg. J. Agric. Sci., 21, 1128–1139 [Google Scholar]
  39. Tsenov, N. & Gubatov, T. (2018). Comparison of basic methods for estimating the size and stability of grain yield in winter wheat. Rastenievadni nauki, 55(5), 9-19 (Bg). [Google Scholar]
  40. Wade, L.J. (1995). Genotype by environment interaction and selection – experiences in sorghum, and expectations for rainfed lowland rice. Eds P.K. Aggarwal, R.B. Matthews, M.J. Kropff & H.H. van Laar. Applications of systems approaches in plant breeding. SARP Research Proceedings, AB-DLO, TPE-WAU, Wageningen and IRRI, Los Baños (1995), pp. 31-39. [Google Scholar]
  41. Yan, W. & Holland, J. (2010). A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171, 355-369. [Google Scholar]